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Relativistic ab initio calculations of inter-ionic potential energies are used to develop
a reliable non-empirical method for predicting the properties of ionic solids containing
the heaviest ions. A physically realistic method for describing the non-negligible
differences between free and in-crystal ion wavefunctions is described. Functions are
presented for describing the partial quenching, arising from ion wavefunction
overlap, of the standard long-range form of the inter-ionic dispersive attractions.
These attractions are shown to be distinct from the contributions to the inter-ionic
potentials that arise from that portion of the electron correlation energy which is non-
zero solely because of overlap of the ion wavefunctions. The results presented for
NaCl, MgO and the fluorides of Li, Na, Ag and Pb show that these modifications
overcome the deficiencies of previous calculations.

Ab initio predictions of the closest cation—cation and anion—anion short-range
interactions, which are not available from semi-empirical fits to experimental data,
are presented. The non-point coulombic interactions between pairs of anions, derived
by adding the dispersive attractions to the short-range interactions, are compared
with previous semi-empirical and approximate ab initio results.

The uncorrelated short-range inter-ionic potentials computed exactly are compared
with those predicted from electron-gas theory. The use of the electron-gas approxi-
mation to describe any of these potentials degrades the quality of the predicted crystal
properties.

1. INTRODUCTION

Knowledge of the forces and potentials acting between ions in ionic solids is required to predict
and understand the behaviour of both pure crystalline materials (Tosi 1964) and those
containing defects (Lidiard & Norgett 1972).

The most widely used theories so far for studying ionic crystals describe the interactions
between pairs of ions by empirical potentials of the Born-Mayer type. Each such potential is
a simple analytic function of the relevant inter-nuclear distance and contains some unknown
parameters which are determined by demanding that the appropriate number of experiment-
ally known properties of the crystal are reproduced. Although such calculations have
undoubtedly played, and will continue to play, a useful role in elucidating the behaviour of
ionic crystals (Tosi 1964; Sangster & Dixon 1976; Catlow et al. 1977; Sangster ¢f al. 1978;
Catlow & Mackrodt 1982), there are four different reasons why one should wish to progress
to more fundamental and rigorous ab initio approaches. First, at a fundamental level, it can
be questioned whether empirical theories explain any features of inter-ionic potentials. Such
theories merely correlate those crystal properties used to determine the adjustable parameters
of the ionic potentials with other properties of the crystal that were not included in the fitting
procedure. Second, it is common for there to be insufficient experimental data to determine
uniquely all the inter-ionic potentials. For example, the repulsive parts of the halide-halide
interaction in the alkali halides (Catlow et al. 19777) and of the oxide-oxide interaction in UO,
(Catlow 1977%7) cannot be determined by empirical fitting. This is because such fits merely yield
parameters simulating the attractive anion—anion dispersion interactions which are greater than
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the short-range anion—anion repulsions for these crystals near their equilibrium geometries.
Consequently, it was decided to attempt to calculate these short-range anion—anion potentials
by non-empirical methods (Catlow & Hayns 1972 ; Catlow et al. 1977; Catlow 1977; Kendrick
& Mackrodt 1983). Furthermore, as any properties predicted for the pure alkali halides will
be invariant with respect to the interchange of the cation—cation and anion—anion potentials,
further ambiguities arise if attempts are made to determine both these short-range potentials
by empirical fittings (Sangster et al. 1978). The need to introduce into empirical schemes
arbitrary assumptions about these interactions, such as that the anion—anion and cation—cation
interactions have the same Born-Mayer hardness parameter (Sangster ef al. 1978), must
provide strong motivation for developing ab initio methods. The third reason for developing
ab imitio calculations is that empirical potentials, derived by fitting data that are determined
by points on the potential curves corresponding to near equilibrium crystal configurations, may
be unreliable for points corresponding to configurations far from equilibrium. Knowledge of
such regions of the potentials is required to investigate both crystal defects involving interstitial
ions (Lidiard & Norgett 1972; Mackrodt & Stewart 1979) and the behaviour of perfect crystals
under very high pressures such as those arising in the mantle of the earth (Cohen & Gordon
1976). The fourth motive for developing ab initio calculations is that it is clearly impossible to
use semi-empirical methods to investigate the properties of hitherto unknown materials and
of materials which can be prepared only in quantities too small for many experiments.
Compounds of transactinide elements such as Ru or Ha provide examples of the latter type
of material, while those of superheavy elements having nuclear charges of 112-124 lying within
the predicted island of nuclear stability provide an interesting example of the former (Lodhi
1978).

One non-empirical approach that has been widely applied to study ionic crystals is the
electron-gas method (Gordon & Kim 1972; Kim & Gordon 1974; for a review see Clugston
1978). Although this method has achieved some success in describing both pure (Cohen &
Gordon 1976; Muhlhausen & Gordon 19814, 4) and defect (Mackrodt & Stewart 1979)
materials, its theoretical status is uncertain. Thus the method cannot be completely trusted
because it is unclear why such a simple method should work well, and because there are some
ambiguities in its implementation (Rae 1974, 1975; Lloyd & Pugh 1977; Clugston & Pyper
1979; Waldman & Gordon 1979; Wood & Pyper 1981) which have generated a large number
of variants. Indeed fully ab initio calculations are required to distinguish between some of these
variants (Wood & Pyper 1981). Furthermore, there is evidence that for some systems, such
as AgF discussed in this paper, currently developed electron-gas calculations can fail quite
badly (Wood & Pyper 1981).

The conclusions that one should progress beyond empirical theories and that the electron-gas
method is not completely trustworthy, strongly motivate the development of fundamental
ab initio approaches. A fundamental ab initio description of ionic crystals is developed by ex-
pressing the wavefunction of the entire crystal as an anti-symmetrized product of the wave-
functions of the individual ions (Léwdin 1950, 1956; Abarenkov & Antonova 1970). From this
an expression for the cohesive energy is derived by calculating the expectation value of the
hamiltonian. Both the Léwdin and Abarenkov & Antonova approaches use this starting point
to show that the cohesive energy can be expressed as a sum of two-body and many-body
potentials that can be reduced to readily computable sums of integrals if each ion wavefunction
is approximated by a single Slater determinant. Although the fundamental formalisms
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(Lowdin 1950, 1956; Abarenkov & Antonova 1970) are undoubtedly correct mathematically,
the results of previous calculations, with three very recent exceptions (Andzelm & Piela 1977,
1978; Wood & Pyper 1986), have been either misleading or disappointing. The deficiencies
of previous calculations have arisen from one or more of the following:

(i) the use of the approximation in which all integrals involving charge densities constructed
as products of different orbitals on the same centre are neglected;

(ii) the use of wavefunctions of isolated ions or the use of inappropriate methods for
describing the modifications to the wavefunctions caused by the crystalline environment;

(iii) inappropriate treatment of the inter-ionic dispersion energy.

Approximation (i), which is extraneous to the basic theory (Lowdin 1950, 1956; Abarenkov
& Antonova 1970), is so poor that the results of calculations that use it are quite misleading.
Although early calculations (Léwdin 1950, 1956; Froman & Loéwdin 1962; Mansikka &
Bystrand 1966; Yamashita & Asano 1970; Calais ef al. 1971; Hayns & Calais 1973) which
included only the Madelung and nearest-neighbour short-range repulsive terms yielded results
in good agreement with experiment, it has been shown subsequently (Abarenkov & Antonova
1970; Andzelm & Piela 1977, 1978; Wood & Pyper 1986; see also §5¢) that this agreement
with experiment disappears when approximation (i) is avoided. Furthermore, use of approxi-
mation (i) predicts unreasonably large short-range anion-anion repulsive energies which
completely destroy the previous (spurious) agreement with experiment (Petterson et al. 1967,
1968; Vallin ¢ al. 1967; Calais et al. 1971). The most extreme example of this phenomenon
is provided by the case of MgO where the short-range O?7...0O% interaction is predicted to
be two to three times as important as the short-range part of the Mg2+t—O? interaction (Calais
etal. 1971).

Those few calculations (Abarenkov & Antonova 1970; Andzelm & Piela 1977, 1978; Wood
& Pyper 1986) that have avoided approximation (i) have shown that use of free ion wave-
functions predicts insufficient binding. This is manifested by too small lattice energies and too
large equilibrium inter-nuclear distances. Hitherto, three methods have been used to generate
wavefunctions adapted to the crystalline environment, none of which is completely satisfactory.
The first method (Froman & Léwdin 1962), based on the virial theorem, merely introduces
a single overall scale factor into the wavefunctions of all the free ions. This method can never
fully describe the distortion of these wavefunctions caused by the crystalline environment
because the innermost core orbitals are scaled by the same factor as the outer orbitals.
Consequently, the optional scale factor determined by minimizing the crystal energy is close
to unity because the total energy is dominated by that of the innermost core orbitals. In any
realistic description of the environmentally induced modifications, the outermost orbitals will
be most affected, while the innermost ones will remain essentially unchanged from their free
ion forms (see §254). The scaling of just the outermost orbital is thus more reasonable (Mansikka
& Bystrand 1966), although the use of the same scaling factor for both the inner and outer
spatial regions is still not completely realistic. In the second approach (Andzelm & Piela 1977,
1978), the wavefunction of each ion is computed from a hamiltonian which includes the purely
electrostatic potential generated either by a point charge description of the neighbouring ions
(the approach labelled pp by Andzelm & Piela) or by the Hartree-Fock charge density of the
neighbours (the approached labelled pc, Andzelm & Piela). Even though the predicted
properties of both LiF and NaF agreed well with experiment it is shown in §2 that use of either
of these two electrostatic potentials alone is theoretically questionable. The third method of


http://rsta.royalsocietypublishing.org/

JA \
! B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A Y

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

AB INITIO CALCULATIONS FOR IONIC SOLIDS 111

computing crystal adapted wavefunctions approximates the environment of an ion by the
potential generated by a ‘Watson shell’ (Watson 1958; Pachalis & Weiss 1969) which is a shell
of total charge equal to minus the charge of the ion, and radius equal to the ionic radius.
Although it was shown in the previous paper (Wood & Pyper 1986) that this method yields
ion wavefunctions which well describe the systems LiF, NaF, NaCl, it was also found that PbF,
was unsatisfactorily described. It will be shown here that the failure of the method to produce
wavefunctions which correctly describe PbF, arises from theoretical inadequacies that are
especially marked for cations.

All previous calculations of ionic crystals have failed to treat the attractive inter-ionic
dispersion energy in a way even remotely satisfactory. Thus the basic formalisms (Léwdin 1950,
1956; Abarenkov & Antonova 1970) do not incorporate dispersion which has also been
neglected in all but the most recent calculations (Andzelm & Piela 1977, 1978; Wood & Pyper
1986). These calculations incorporate the dispersion energy in its undamped expanded
multipole form (Kreek & Meath 1969) in which the attraction between a pair of ions a and
b is written as Cg(ab) /7§, + Cy(ab)/rs,. However, this form is only correct when the distance
7yp between the ions is sufficiently large that the overlap of the ion wavefunctions is negligible
(Kreek & Meath 1969; Jacobi & Csanak 1975). As the short-range repulsive forces, which
prevent an ionic crystal from collapsing under the coulomb attraction of the ions, arise from
the overlap of the ion wavefunctions, overlap must be important for inter-ionic distances near
equilibrium, thus showing that it is theoretically incorrect to use the undamped expanded
dispersion series. This undamped series predicts too great an attraction when wavefunctions
overlap significantly, a theoretical fault that cannot be ignored. Wood & Pyper (1986) showed
for PbF, and also, in particular, for AgF, that use of the dipole-dipole (C;) and dipole-
quadrupole (Cy) terms of the undamped expanded dispersion series does indeed yield spuriously
large lattice energies and equilibrium inter-nuclear distances that are far too short. As this
difficulty is masked in systems such as LiF and NaF, where the dispersion energy is much
smaller than for AgF and PbF,, the quality of the numerical results obtained was not
significantly degraded (Andzelm & Piela 1977, 1978). However, the AgF and PbF, results
show that one should use a theory (Jacobi & Csanak 1975; Koide 1976) in which each term
of the expanded dispersion series is multiplied by a theoretically well defined and, in principle,
calculable damping factor.

The object of this paper is to describe ab initio calculations which not only contain all the
essential features needed to rectify the deficiencies of previous calculations but which, unlike
previous calculations by other groups, incorporate all the major one-electron relativistic effects.
It has been shown not only that relativity significantly modifies the behaviour of even the
valence electrons in a heavy element (Grant ez al. 1976 ; Rose ¢t al. 1978; Malli 1983) but also
that this cannot be adequately treated by first-order perturbation treatments of relativity (Pyper
& Marketos 1981). Hence, a computational method capable of handling ionic solids containing
the heaviest ions should use the four-component wavefunctions that arise in the fully relativistic
description provided by the Dirac equation (Dirac 1958). This paper presents results of
calculations for halides of metals ranging from the lightest, Li, where relativity and dispersion
are unimportant, to the heavy, Pb, where it is essential to consider both these phenomena. A
useful by-product of this research is the ab initio determination of halide-halide short-range
potentials which cannot be readily derived by semi-empirical methods for the reasons discussed
above. Although relativity will be quite unimportant for MgO, the results of the MgO


http://rsta.royalsocietypublishing.org/

THE ROYAL A
SOCIETY /A

PHILOSOPHICAL
TRANSACTIONS
OF

A

a
s

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

112 N. C. PYPER

calculations presented here are of interest for three reasons. First it is shown that an ab initio
(not electron-gas) calculation can provide a realistic description of MgO and hence that the
previous unacceptable results (Calais ¢ al. 1971) arose solely from use of approximation (i)
already discussed. Second, comparison of experimental results with the theoretical results
computed assuming full ionicity, probes the validity of a fully ionic description of this oxide.
Third, this investigation yields a short-range oxide—-oxide potential whose ab initio determination
is of interest for the reason discussed in the first paragraph of this introduction.

2. THEORY
(a) Basic method

The precise mathematical meaning of the assumption that the crystal is composed of N;,,
ions must be that the wavefunction | ¥, (ry, 1y, ..., 7y )) for the N, electrons in the crystal

is able to be factorized into an antisymmetrized product of N,,, wavefunctions
| Dy (7, oy -.., Fyg) Of the individual ion a:
~ Nion
| Wer(Pys Fos oo Py )Y = Scrﬂ’{agl | Py (Fy, o oo rNaSJrNa_l))}. (2.1)

Here N, is the number of electrons of ion a and N, is the label of the electron appearing first
in the wavefunction of ion a in (2.1) so that N, = 1+ 337} N,, where the sum over 4 is over all
ions preceding a in the wavefunction (2.1). The overlap of the wavefunction of any ion with
those of the other ions causes the normalization constant S, to be less than unity for all finite
separations of the ions. The quantity .o is the partial antisymmetrizer containing, besides the
identity, only permutations that interchange coordinates of electrons belonging to different
ions. The ionic model is defined by specifying the number N, of electrons on each ion; it is
not necessary in principle either to be restricted to a Hartree-Fock description of the individual
antisymmetric ion wavefunctions | @y (ry, Fy, ..., 7)) or to assume that these wavefunctions
are the same as those of the isolated ions, an assumption which would neglect the modifications
of the wavefunctions caused by the crystalline environment.

It would appear in the current state of theory and computational machinery that the
development of a program which not only is fully relativistic but can also handle the heaviest
ions is a sufficiently new and major undertaking without attempting the further new step of
using correlated ion wavefunctions. Hence, the wavefunction of each of the ions a will be
approximated by a single determinant of Dirac-Fock atomic orbitals expressed in the standard
central field form (Grant 1970, eq. 2-13, Pyper 1982, eq. 2-24)

N&

(@1 )> = 7 (T 18400, 2.2

where 7, ; is the vector describing the position of electron ¢ with respect to the nucleus of ion
a and & is the antisymmetrizer. It should be stressed that the crystalline environment will cause
the orbitals | ¢; (r, ;) to differ from those | $3 (r, ;)> obtained from a Dirac-Fock calculation
for the isolated ion. The total relativistic electronic hamiltonian #,,(R) for the crystal having
nuclear positions defined by the closest cation—anion inter-nuclear separation R will be taken
to be

Nion - ~
e;?cr(R) = a§1 e}?T:al.'f"za; sz'a (”Tab(xab R) _%Ta_fTb)s (2'3)
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where x,,, is a purely geometrical constant relating R to the separation x,,, R between the nuclei
of the ions a and b. The hamiltonian # g,y (%, R) for the pair of ions a and b having nuclear
charges Z, and Z,) is

NagtNp—1 Nps+Np—1

P

H pap(%ap R) = Hpy+ Hpy— X Zyrphi— X Zyrgh
t= Ny t=Nps
N&S+N84~1 NbS+Nb_l
+ X > 15t 2y Zy/ (% R), (2.4)

i=Ngg J=Npg

with the hamiltonian 5y, for an isolated ion a given by

NagtNa—1 ) ) ) Nas+tNg—2 NagtNo—1
Hpe= X @) PO+ -1 -Zyd+ XD g (25)
i=Nge i=Ngg  j=i+1

where a(z) and (i) are Dirac matrices and ¢ is the velocity of light. Under the approximation
(2.2) for the individual ion wavefunctions, the crystal wavefunction (2.1) becomes a single
Slater determinant whose energy E,.(R) calculated as the expectation value of the hamiltonian
(2.3) can be written (Abarenkov & Antonova 1970) as a sum of 2-body, 3-body, up to N,.-body
terms

E.(R) = <¥’cr(rv Fy ooy rNcr) |fcr(R)l Yor(ry Py oo rNc,.)>

Ner Negr—=1 Ner

=2 ER+ X X Vi,p,R+F 2 +.... (2.6)
a=1 a=1 b=a+1 a#b#c

Here E,(R) is the energy that single ion a would have if it had the wavefunction (2.2) optimal

for the crystal with separation R, so that

Ey(R) = Dy (Fy, Pyy ooy Py ) g By (1, Py, o Py ), With Ny = 1. (2.7)

The quantity V9 (x,, R) is the energy of interaction of a pair of ions a and b separated by a
distance x,, R described by wavefunctions (2.2) optimal for the crystal. It can therefore be
calculated as

ng(xabR) = <Wab(r1> Rt rNa+Nb) l'y?Tab(xab R)l glab(rl’ tee rNa+Nb)>

—E,(R)—E,(R), with N,,=1, Ny, = N,+1, (2.8)

where |, (7, .., rNa+Nb)> = Sy A (D, (1, ...y rNa)>|tDb(rNa+l, cees 'Na+Nb)>}' (2.9)

The result (2.6) is exact (Abarenkov & Antonova 1970), unlike the corresponding result of
Loéwdin (1950, 1956) derived by truncating an expansion in powers of the orbital overlap.
Although (2.3) is unsatisfactory (Brown & Ravenhall 1951; Mittelman 1971, 1972) as a
general relativistic hamiltonian because it does not correctly yield the energies of wavefunctions
describing the presence of a positron, it can be used in (2.6) because all the orbitals entering
the crystal wavefunction (2.1) are solutions of a Dirac—Fock equation describing an electron
in the crystal.

The expansion (2.6) of the crystal energy as a sum of n-body terms is expected to converge
rapidly (Abarenkov & Antonova 1970); thus three-body energies are known to be much smaller
than two-body terms (Abarenkov & Antonova 1970; Andzelm & Piela 1977, 1978). Although
the deviation from the equality of the elastic constants C,, and C,, predicted for a static lattice
subject only to pairwise inter-ionic interactions (Zener 1947) can be naturally explained by
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the three-body terms (Loéwdin 1950, 1956), it has been suggested that the experimentally
observed deviations can also be explained otherwise (Ree & Holt 1973), at least for the alkali
halides. This observation coupled with the smallness of the three-body compared with the
two-body terms indicates that attention should be focused initially on the two-body interactions,
knowledge of which is still rather limited. In the two-body approximation, the binding energy
U} (R) of the crystal with respect to its component free gaseous ions is found from (2.6) to be
UL(R) = Z X Vay(%ap R) + Z Efe(R). (2.10)
a=1b<a a
Here EZ (R) is the ‘rearrangement energy’ required to convert a free gaseous ion, a, of energy
E, (2.12) to the non-stationary state described by the wavefunction (2.2) optimal for the
crystalline environment with closest cation—anion separation R

E5(R) = Ey(R)—Ey, @.11)
E, =Y (P, s 1y ) |y BE(ry, oy Py ), Ny =1, (2.12)
Na
with (BF (7, ...,y )d = d(ﬂ 6% <ra,i>>), (2.13)
i=1

so that |®F(r,, ..., rNa)> is the Dirac-Fock wavefunction for the free ion a. It is convenient
to separate V3 (%,, R) into the point coulombic value (g, ¢,/%,, R, where ¢, = Z,— N, is the
charge of the ion a) it would have if the ion wavefunctions did not overlap, and the remainder
V& 1(%ap R) arising from wavefunction overlap. This separation is useful because the point
coulomb terms in (2.10) which decrease very slowly with increasing x,, constitute a known
Madelung sum while the remaining short-range potentials V3, (x,, R) decrease rapidly with
increasing x,,. It is, therefore, only necessary to consider a few near neighbour short-
range terms V&, (x,, R). If only the nearest cation—anion, anion—anion and cation—cation
short-range interactions are considered, (2.10) with definition (2.14) shows the binding energy
Up(R) per formula unit of compounds CA , to be expressible through

ng (xab R) = Vsoab (xab R) +4, qb/ (xa.b R), (2.14)
UR(R) = —M/R+ngp Vica(R) +3{nce Vice(koc R) +mngp Vsa(xaa R)}
+EC(R)+mEA(R), (2.15)

where n,,, is the number of nearest b ions around each a ion and M is the Madelung constant.
The closest cation—anion separation at the equilibrium minimum energy geometry of the
crystal R, the lattice energy — U} (R,) and bulk compressibility can be predicted from the
function U (R). This function can be evaluated because the short-range interactions are known
from (2.14) after computing the total interactions V2 (%, R) from (2.8) by using the
Relativistic Integrals Program RIP described in the preceding paper (Wood & Pyper 1986),
while the rearrangement energies (2.11) are readily computed from the expectation values
(2.7) and (2.12) of the free ion hamiltonians (2.5).

The expression (2.15) for the crystal binding energy entirely neglects electron correlation.
The intra-ionic correlation is neglected by invoking the Dirac-Fock form (2.2) for the ion
wavefunctions, while the form (2.1) for the crystal wavefunction implicitly neglects inter-ionic
correlation thereby omitting the dispersion interactions between the ions. Although there is no
evidence that the intra-ionic correlation contributes significantly to the crystal binding energy,
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the inter-ionic correlation, and also, more significantly, the dispersion, is far from negligible,
particularly for heavy ions. At large ionic separations for which ion wavefunction overlap is
negligible, the dispersion series describes the inter-ionic correlation almost entirely because the
only terms omitted arise from third- and higher-order perturbation theory treatments of the
inter-ionic interaction hamiltonian (the last four terms of (2.4)). However, at smaller
separations where ion wavefunction overlap is appreciable, the dispersion series, even in its
unexpanded form valid in the presence of overlap (Kreek & Meath 1969), does not describe
the entire inter-ionic correlation. As the additional terms depend explicitly on overlap, these
decrease rapidly with inter-ionic distance so that only the nearest cation—anion, anion—anion
and cation—cation contributions need be considered.

As no rigorous theory of the correlation energy of a solid exists, these overlap dependent
terms are estimated by using the density functional theory based on the uniform electron-gas
(Gordon & Kim 1972). The total inter-ionic correlation energy is then calculated as the sum
of the electron-gas overlap contribution plus the dispersion energy since there is evidence
(Clugston & Pyper 1979; Wood & Pyper 1981 (and in Appendix 4)) that these two terms are
distinct. The crystal binding energy then becomes

UL(R) = UY(R) +nca VR (R) + Hnec V& (xoc R) +mnyp VEK (x4 R)}+ Uyisp (R)
=—M/R+ngp Vica(R) + Hnge Vice(tcc R) +mnyp VA (x44 R)}
+E§e(R) +mE1‘f\e(R) + Udisp(R)’ (2.164)
with Vean(%an B) = Vp(%ap R) + VS (xap R), (2.166)

so that V3, (xa, R) can be regarded as a short-range potential corrected for short-range
explicitly overlap dependent correlation. In (2.16) Uy;q,(R) is the total dispersion energy whose
calculation is described in §2¢. As the inter-ionic dispersion interactions decrease relatively
slowly with distance, the leading term varying as R¢, the interactions between all the ions must
be considered, unlike the short-range overlap correlation VE%T (x,, R). For all the ions studied
except oxide O?” the rearrangement energies E2?,(R) are small so that the correlation
contribution to these energies will be even smaller and can therefore be neglected.

The free doubly charged oxide ion O is unknown because it is unstable with respect to
decay into a single charged oxide ion O~ and a free electron. Hence for oxides, the
experimentally observable quantity is the energy of the lattice relative to free cations, free O~
ions and free electrons (Cohen & Gordon 1976). This observable crystal binding energy is still
given by (2.16) provided the definition (2.11) of the rearrangement energy is replaced by

EQ(R) = Ege-(R) — Eqg-+ ESO'T (2.17)

re »

where the energy Eq- of the O~ ion is evaluated as (2.12) with |®F-(r,, ..., ,)) the single
determinant Dirac-Fock O~ ion wavefunction. The correlation contribution ES9™, which is
taken to be independent of R, is derived by subtracting the correlation energy of O2~, estimated
by extrapolating along the neon iso-electronic sequence (Clementi & McLean 1964), from the
known correlation energy of O~ (Clementi & McLean 1964). The rearrangement correlation
contribution EZQ™ is then found to be —0.083 a.u.t (Cohen & Gordon 1976).

T 1 a.u. (atomic unit) = 1 hartree &~ 4.359828 aJ.
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(b) Description of the crystalline environment
(1) Basic physics

The inter-ionic pair potentials (2.8) can only be calculated after orbitals suitably adapted
to the crystalline environment have been computed. A fundamental theory of the effect of the
environment on the ion wavefunctions would be developed by assuming that the crystal
wavefunction (2.1) can be written as a product of ion wavefunctions (2.2) each of which is
constructed from orbitals having a central field form with respect to the ion and then
demanding, subject to appropriate orthonormality constraints, that the total crystal energy
E..(R) be stationary with respect to variation of the radial parts of each of the central field
orbitals. Such a theory could then be cast into a form yielding the orbitals of any ion as
eigenfunctions of a Fock-like operator which contains, besides purely intra-ionic terms,
additional operators originating from the environment. These additional operators can be
divided into two classes: first, those constituting the purely coulombic potential generated by
the nuclei and electrons of the surrounding ions, and second, those originating from the overlap
of the occupied orbitals of one ion with the occupied orbitals of neighbouring ions.

The operators originating from the environment, whether local or non-local, can be
expanded in spherical tensors defined with the nucleus of the relevant ion as origin. It is shown
in Appendix 1 for closed shell ions that only the spherically symmetric (rank zero tensor) part
of this expansion contributes to the energy if for every sub-shell A the radial parts of all the
2j 4 + 1 orbitals belonging to that sub-shell are taken to be identical. It should be stressed that
this result is a purely mathematical consequence of the assumption that the radial parts of the
orbitals belonging to a sub-shell are identical and that it is not assumed that the environment
can be replaced by its spherical average.

(i1) Potential for anion electrons

For an anion whose nucleus is taken as the origin, the negative of the spherically symmetric
part of the electrostatic potential generated by a cubic lattice of ions each described as a point
charge is constant and negative from the origin out to a distance equal to closest cation—-anion
separation R. This function then increases rapidly for large separations and tends to zero at
large distance (see figures 1 and 3 of Mahan 1980) after small oscillations associated with
non-nearest neighbour separations. The addition of this function, which describes the influence
of a point charge lattice on an anion electron, to the free ion Dirac-Fock hamiltonian causes
the outermost orbitals of an anion to contract relative to those of the free ion. These
contractions are illustrated by the orbital mean radii for the fluoride ion in sodium fluoride
at R = 4.5 reported in column 3 of table 1. The much smaller expansion of the 2s orbital is
a secondary effect caused by the contraction of the 2p orbitals. The decrease of the short range
Nat—F~ repulsion Vi;,(R) (2.14) caused by the contraction of the fluoride ion more than
offsets the rearrangement energy (2.11) thus causing the binding energy U} (4.5) to be slightly
more negative than that calculated by using free ion wavefunctions. The binding energy
calculations reported in this subsection include only the Madelung, rearrangement and
uncorrelated short-range Na*—F~ repulsion terms. The essential conclusions of this section do
not require consideration of the remaining terms.

In contrast to the anion orbital contractions induced by a point charge lattice, these orbitals
are predicted to expand if the electrostatic potential generated by the nearest cations is
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TaBLE 1. JON WAVEFUNCTION INFLUENCE ON THE CRYSTAL BINDING ENERGY OF
SODIUM FLUORIDE AT R = 4.5 k] mol™

Description of potential from environment used to compute wavefunctions®

(1) @) 3) (4) (®) (6) (7)

full
exact point Watson Watson
free DC charge shell (2.18) shell

{ry/a.u.

1s 0.1752 0.1752 0.1752 0.1752 0.1752 0.1752 0.1752

2s 1.0340 1.0324 1.0350 1.0344 1.0361 1.0361 1.0361

2p 1.2525 1.2692 1.2403 1.2467 1.2175 1.2207 1.2175

2p 1.2574 1.2746 1.2450 1.2512 1.2211 1.2243 1.2211
¢/Ryd

1s 51.7178 52.5502 52.4702 52.4837 52.4078 52.4016 52.4078

2s 2.1560 2.9695 2.9150 2.9247 2.8822 2.8710 2.8822

2p 0.3652 1.1762 1.1263 1.1349 1.0952 1.0840 1.0952

2p 0.3593 1.1701 1.1207 1.1292 1.0897 1.0785 1.0897
EH@ 0.0 9.2 2.8 0.6 11.5 9.7 13.9
Vo%a (4.5) 23.5 26.2 20.6 22.1 17.1 17.5 16.8
Vit ® 878.6 862.6 896.0 886.9 917.0 914.7 918.6
— U3, (4.5)@ 878.6 853.4 893.2 886.3 905.5 905.0 904.7

@) Free Nat wavefunctions used for columns (1)-(6), hence ES, (4.5) = 0.

® F9t = ES, (4.5)+ B, (4.5).

© Yy = (M/4.5)6VSg4 (45).

@ N (4.5) = Vjp,— E%t is crystal cohesive energy for R = 4.5 a.u.

(1) Free F~ wavefunctions.

(2) F~ wavefunctions computed in the direct electrostatic potential generated by the Dirac-Fock charge
distribution of nearest cations plus the potential arising from a point charge description of all other ions.

(3) F~ wavefunctions computed in the electrostatic potential generated by a lattice of point charges.

(4) F~ wavefunctions computed in potential due to a shell of total charge equal to the Madelung constant and
of radius 4.5 a.u. This potential equals that of (3) for 7, < 4.5 a.u.

(5) F~ wavefunctions computed in potential due to a shell of total charge of 1 having a radius equal to the F~
ionic radius (2.513 a.u.; Johnson 1968).

(6) F~ wavefunctions computed in potential (2.18).

(7) F~ wavefunctions computed as in (5). Na* wavefunction computed in potential due to a shell of total charge
—1 of radius equal to the Na* ionic radius (1.890 a.u.; Johnson 1968).

calculated from the full cation Dirac-Fock charge distribution rather than by approximating
these ions as point charges. These expansions, illustrated by the sodium fluoride results in
column 2 of table 1, arise because the attractive well generated by the full cation nuclear charge
is much greater in magnitude than the purely electrostatic repulsion generated by the cation
electrons. These orbital expansions increase the short-range cation—anion repulsion thus
causing the binding energy Ul (4.5) to be less negative, even disregarding the positive
contribution of the rearrangement energy (2.11). This approach (labelled pc by Andzelm &
Piela 1977) of using the full Dirac-Fock nearest neighbour ion wavefunctions to generate the
electrostatic potential added to the free anion Dirac-Fock hamiltonian is incorrect on both
physical and mathematical grounds unless the further terms that arise from overlap of the anion
wavefunctions with neighbouring cation wavefunctions are also included. These additional
terms, whether represented by a local function or more exactly by some non-local operator,
constitute an additional repulsive potential acting on an anion electron in spatial regions where
the density of neighbouring cation electrons is appreciable. This repulsive potential arises from
the increase in kinetic energy caused by the requirement that the anion orbitals must be
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orthogonal to the cation orbitals; the orthogonality requirement originates from the Pauli
principle. This pc approach is incorrect physically because the overlap repulsion more than
outweighs the attractive well arising from the nuclei of neighbouring cations. The pc approach
also fails mathematically because the variation principle, which can be used to gauge the
quality of wavefunctions describing states containing only electrons and no positrons, shows
that the crystal wavefunction (2.1) constructed from free ion wavefunctions (2.13) is a better
approximation than the function (2.1) built from the ion wavefunctions of the pc approach.
Thus the pc approach predicts a less negative binding energy and hence a total crystal energy
less negative than that calculated by using free ion wavefunctions (2.13).

The spherically symmetric component £ (r,; R) of the operator for the potential energy
of an anion electron, arising from its interaction with the crystalline environment, is hard to
construct exactly because the overlap contribution to F{? (7, ; R) will be non-local. However,
the variation principle justifies the use of approximations to the potential because the greater
the predicted lattice energy the more closely the potential approximates the true crystalline
potential and the more closely the resulting ion wavefunction (2.2) approximates the true ion
wavefunction. The potential function of 7, , the distance from the anion nucleus, which depends

parametrically on the closest cation—anion separation R,

FQu(1a5R) = —keny o/ (R—Ry), 74 < R—-Ro} (2.18)
= '_kenvA/rA’ Ty Z R_RO
with kenya/ (R—Ry) = Genval/R, (2.19)

has the correct physical behaviour, qualitatively reproducing the exact F{, (r,; R). The ratio
— @env a/ R reproduces exactly the electrostatic potential energy of an electron at the anion
nucleus arising from a point charge lattice thus defining the constant £, 4. For the NaCl
lattice ¢y 4 is the Madelung constant, while for the fluorite lattice @, , o equals the Madelung
constant of CsCl lattice (Benson & van Zeggeren 1957). The contribution to the exact potential
energy operator F (r,; R) arising from overlap with neighbouring ions is negligible at small
distances r, from the anion nucleus, where the amplitudes of the orbitals of neighbouring ions
is minute. As examination of the exact L = 0 component of the electrostatic potential generated
by the Dirac-Fock charge distributions of neighbouring ions showed this to approximate that
generated by the corresponding lattice of point charges, being constant for those small r, at
which the electron density of neighbouring cations is negligible, the potential (2.18) has the
correct physical behaviour at small 7,. A suitable choice for the parameter R, in (2.18) also
ensures that the physical behaviour of (2.18) is correct at larger distances 7, for which the
electron density of neighbouring ions is significant because this reproduces the increase of the
potential caused by overlap with neighbouring ions. The choice of either the ionic radius of
the neighbouring cation or of some parameter reproducing this ensures that (2.18) has the
correct physical behaviour for all 7 (see figure 3 of Mahan 1980). The choice 1.854/¢,{r,>
for R,, where ¢, and <7, are the eigenvalues and mean radius of the outermost cation orbital
in atomic units reproduces the covalent radii of the groups IA and IB ions, while a similar
expression reproduces the univalent radius of Pb?* to which the normal ionic radius can be
related (Pauling 1960).

The very close similarity (columns 3 and 4 of table 1) between the orbital radii and binding
energies predicted by using the L = 0 component of the exact electrostatic potential generated
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by a point charge lattice and those predicted when this potential is replaced by —@g, a/R
forr, <R and by — ¢,y 4/7a for 74 = R shows that the details of the potential for 7, > R are
unimportant. Hence the use of (2.18) is in no way impaired by the absence of these details.
Table 1 shows that the anion orbitals computed by adding the potential energy (2.18), which
simulates the overlap repulsion, to the free ion Dirac-Fock operator are significantly contracted
compared with both those of the free ion and those of the ion subject to the purely electrostatic
potential of a point charge lattice. Furthermore, the short-range cation—anion repulsion
VO a(R) is significantly reduced, thereby predicting a considerably more negative crystal
binding energy.

Although the potential (2.18) is that due to a spherical shell of charge £,,, , and radius
(R—R,), it differs from the Watson shell model (Watson 1958; Schmidt et al. 1979) in which
the potential is that due to a shell of radius equal to the anion radius carrying a total charge
equal to minus the anion charge. Thus the potential (2.18), unlike that due to Watson shell
which is independent of R, has the correct physical variation with cation—anion separation R,
and tends to zero for large R. For NaF at R = 4.5 the anion orbitals and crystal binding energy
(column 5 of table 1) predicted by using the Watson shell model differ very little from those
predicted with (2.18) (column 6 of table 1) because the Watson shell potential is very similar
to (2.18) for values of R close to the experimental R, (4.38 a.u.).

(ii1) Potential for cation electrons

For a cation whose nucleus is taken as the origin, the negative of the spherically symmetric
part of the electrostatic potential generated by a point charge lattice is positive and constant
for distances 7 from the cation nucleus less than the closest cation—anion separation R. This
potential then decreases for larger 7. The addition both of the correction arising from the spatial
extension of the electron density of neighbouring anions and of the overlap repulsion causes
the total potential energy to increase slightly at distances greater than the cation radius (see
figure 3 in Mahan 1980). As this increase is not large, the spherically symmetric component
of the operator for the environmentally generated potential energy of a cation electron will be
taken to be

FQu(re; R) = enyc/R 1c < R } (2.20)
= ¢envc/rc e = R

The constant ¢, ¢ is chosen such that (2.20) exactly equals the potential energy of an electron
at the cation nucleus generated by a point charge lattice. As this definition of ¢,  ensures
that (2.20) is correct at small 7, while the decrease for 7o > R is also reproduced, (2.20)
has the correct physical behaviour for all r,. For the NaCl lattice @opnyc = Penva and
also equals the Madelung constant My, of the lattice, while for the fluorite lattice

enve = V3Myac1 + Meger, where Mo is the Madelung constant for the CsCl lattice (Benson
& van Zeggeren 1957). For all cation—-anion separations R, other than those small R yielding
repulsions V3. , (R) so large as to render the crystal configuration energetically inaccessible, the
cation orbitals have only minute amplitudes at distances 7o > R. Consequently, the cation
wavefunctions computed with the addition of (2.20) to the free ion Dirac-Fock hamiltonian
are virtually identical to those of the free cation.

The potential (2.20) is qualitatively different from that (figure 1 of Schmidt et al. 1979)
generated by a Watson shell of radius equal to the cation radius and carrying a charge equal

13 Vol. 320. A
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to minus the cation charge. This potential is physically incorrect because it decreases rapidly
at distances greater than the cation radius rather than increasing slightly. The use of such a
qualitatively incorrect environmental potential can cause the cation orbitals to be excessively
expanded compared with those of the free ion. For NaF at R = 4.5 a.u. the binding energy
(table 1, column 7) predicted by using the Watson shell model to generate both cation and
anion wavefunctions is only slightly less negative than that predicted by using the potentials
(2.20) for the cation and (2.18) for the anion. However, the results for other systems,
particularly PbF, discussed later, clearly reveal the deficiencies of the Watson shell model for
cations.

(iv) Total environmental potential

The operators (2.18) and (2.20), describing the environment of anion and cation orbitals
respectively, provide an approximate representation of the exact potential but one which,
nonetheless contains the essential physics.

The localized orbital formalism (Adams 1961, 1962; Gilbert 1964) might seem to be
preferable for computing atomic orbitals adapted to the crystalline environment (Kunz
19734, b); Pantelides et al. 1974) because this provides an equation for generating such orbitals
that is formally exact even though it contains an arbitrary operator A. However, although the
choice of the localizing potential A is in principle arbitrary, the degree to which the exact
solutions of any Adams—Gilbert equations are localized about just one centre must depend on
the choice for A. Thus for the valid choice A = 0, the Adams-Gilbert equations reduce to the
Hartree-Fock equations for the entire crystal whose solutions are delocalized orbitals.
However, in this case the assumption that the orbitals are localized about only one centre
reduces the Adams—Gilbert equations (equation 5 of Kunz 1973 4) to the atomic Hartree-Fock
equations incorporating the electrostatic environmental potential of the bc approach (Andzelm
& Piela 1977) which has been shown to be unsatisfactory. This example shows that the orbitals
computed through the Adams-Gilbert formalism depend on the arbitrary choice of the
localizing potential A if the orbitals are forced to be centred on just one nucleus having the
standard central field form with respect to that nucleus as origin. There is, therefore, no reason
to prefer this formalism over the potentials (2.18) and (2.20) even if the Adams-Gilbert
equations, which are greatly complicated by the presence of multi-centre integrals, could be
solved for the heavy ions considered in this paper.

(¢) The dispersion energy
(1) Fundamental theory

The total dispersion energy Uy;sp(R) of a crystal composed of closed shell ions can be written

Nion—1 Nign
UgpB) =— 2 2 T X (xapR) Cy(ab) (x5 R)™™. (2.21)
a=1 b=a+l1n=6,8,..
Here C,(ab) is the dispersion coefficient yielding that part of the dispersive attraction
C,(ab) r;* between the ions a and b (7., is the a-b internuclear separation) which varies as
- in the limit of negligible wavefunction overlap. The quantities ¥3°(r) are damping
parameters (Jacobi & Czanak 1975; Koide 1976) which are unity for distances r for
which the overlaps of the wavefunctions of ion a with those of ion b are negligible, but which
reduce the undamped energies C,(ab) 7;» when wavefunction overlap is not negligible. For

-
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inter-ionic distances where overlap is appreciable, the damping functions y2P(r) decrease
rapidly with increasing n so that terms with high » in (2.21) are unimportant; the ="
dependence also ensures that these terms are unimportant at large r.

The overlaps between all pairs of ions except the closest cation—anion, anion—anion and
cation—cation pairs will be negligible so that the corresponding dispersion damping parameters
can be replaced by unity. After invoking this simplification and retaining only the dominant
C, (dipole—dipole) and Cy (dipole-quadrupole) terms, the total dispersion energy (2.21) for a
CA,, crystal becomes

Udisp(R) = Ugilsp(R) + Ug‘ilsp(R)’ (2'22)
Ufip(R) = — X [S,(CA) C,(CA) +4(S,(CC) C,(CC) +mS,(AA) C, (AA))JRT™,  (2.23)
n=6,8
Ugisp(R) = — A {nca(Xa®(R) —1) Cy(CA) R +3{ncc (X5 (xco R) — 1) Cp(CC) (xgc R) ™
+mnyp(Xnt (x4 R) = 1) C(AA) (x40 R) ]} (2.24)

Here Ugj,(R) is the ‘undamped’ dispersion energy predicted if all the dispersion damping
parameters are unity, while U§{ (R) is the correction which replaces the undamped by the
damped dispersion interaction for the closest cation—anion, anion—-anion and cation—cation
pairs. The constant §,,(XY) is a purely geometrical factor which yields the undamped R™"
dispersion interaction of one ion of type X with all other ions of type Y as §,, (XY) C,(XY) R7".

For four common lattice types the values of the lattice dispersion sum constants §,,(XY)
computed by direct summation in real space are reported in table 2. These results agree with
those derived (Tosi 1964) from the lattice sum constants for close-packed homonuclear lattices
calculated by Ewald summation techniques (Lennard-Jones & Ingham 1925). The derivation
(Tosi 1964) of these constants from the homonuclear results was also found to be correct in
an independent check made in the present work. This check coupled with the agreement
between the two sets of results provides strong evidence that the values reported in table 2 are
correct and that the two different sets of results (Morris 1957; Reitz et al. 1961) for the
fluorite structure and the slightly different results (Mayer 1933; Waddington 1959) for S3(AC)
and Sg(AA) in the CsCl structure are in error. The results of table 2, unlike those (Morris 1957;
Reitz ¢t al. 1961; Mayer 1933 ; Waddington 1959) believed to be in error, satisfy the relations
S,(CA)(CaF,) = §,(CA)(CsCl) = 25,,(CA)(ZnS) and S,,(AA)(Cak,) = S,(AA)(CsCl) where
the bracketed chemical formulae denote the crystal structure with ZnS being the zinc blende
structure.

TABLE 2. LATTICE DISPERSION SUM CONSTANTS T

Lattice

type Ss(CA) $6(CC) $5(CA) $5(CC)
NaCl 6.5952 1.8067 6.1457 0.8001
CsCl 8.7090 3.5445 8.1575 2.1977
ZnS 4.3544 0.7622 4.0787 0.2532
CaF, 8.7090 0.7622 8.1575 0.2532

t For NaCl, GsCl and ZnS (zinc blende) structure §,(AA)=S,(CC). For CaF, S,(AA) = 3.5445,
Ss(AA) = 2.1977.

13-2
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In principle the crystal dispersion energy can be calculated ab initio from (2.21) to (2.24)
because the dipole-dipole C¢(ab) and dipole-quadrupole Cy(ab) dispersion coefficients can be
computed (Dalgarno & Davison 1966; Buckingham 1967; Doran 1974) as integrals over the
appropriate frequency-dependent ion polarizabilities which can be computed ab initio. The
damping functions could also be computed ab initio as integrals over certain generalized
polarizabilities (Koide 1976). However, the ab initio computation of both the dispersion
coefficients and damping functions for ions in crystals, although possible in principle,
constitutes a major task which has not yet been done. The difficulties would be especially severe
for the heavier ions such as Pb?*, where relativistic effects would need to be considered. Hence
in the present work these important parameters must be estimated by using less rigorous
methods. It is shown in the next section that the dispersion coefficients can be estimated reliably
by a semi-empirical approach, while a non-empirical method for calculating the dispersion
damping parameters is presented in §2 (¢) (iii).

(i1) Dispersion coefficients

The dipole-dipole Cg coefficient. The dipole-dipole dispersion coefficient Cy(Lit Li*) for the
interaction of two gaseous Li* ions is known exactly from ab initio calculation (Glover &
Weinhold 1977). The Cy coefficients can, in principle, be derived also from experiment by
integration of the optical spectra of crystals (Mayer 1933 ; Lynch 1967). However, this method,
although providing a useful check on the semi-empirical calculation described below (see
Appendix 2), has only been applied to a very small number of systems. Its applicability is also
limited by the requirement that the experimental spectrum can be clearly separated into
individual cation and anion contributions. However, since the C, coefficients, excepting
Ce(Li* Lit*), required here are not known from either ab initio calculation or experiment,
semi-empirical methods of evaluation have to be used.

An approximate variational calculation (Slater & Kirkwood 1931) predicts the C, coefficient
for the interaction between two species a and b to be

Co(ab) = fay /[ (0ta/ Py)t+ (ot Py)11, (2.250)
hence Cy(aa) = 3ai Pi. (2.25b)

Here a, is the static dipole polarizability of a, and P,, the electron number, is the effective
number of electrons contributing to the polarizability. It is shown in Appendix 2 that the
Slater-Kirkwood formula with P, taken as the number of electrons in the outermost shell of
a predicts the accurately known C, coefficients for the inert gases, alkali and alkaline earth
metals and Hg much more reliably than either the London formula (Eyring ef al. 1944 ; Salem
1960) or than the ground state expectation values of Fraga ¢t al. (1976). The results show that
the London formula is not reliable because the C; coefficients involving alkali and alkaline earth
metals are overestimated by factors as great as three, while C¢(K* K*) is overestimated by a
factor of two. The ground state expectation values (Fraga et al. 1976) also seriously
overestimate the C, coefficients of the heavier inert gases and alkali metals and of all the alkaline
earths. The Slater-Kirkwood approximation, however, does not suffer from these deficiencies
with even the C; coefficients of some molecules being reliably predicted.

The Slater-Kirkwood approximation does least well for the inert gases Ne to Xe, where there
is an ambiguity in the choice of the electron number which might plausibly assume any value
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between 6 and 8. In Appendix 2 it is shown that the Slater—Kirkwood formula with the electron
number P, chosen to reproduce exactly the coefficient Cg(aa) for the interaction of two species
a accurately reproduces the Cq coefficients for pairs of unlike atoms. This method has the
advantage of avoiding inaccuracies that might arise through ambiguities in the choice of P,.
The Cy coefficients required in the present work are therefore calculated through (2.25) by
using electron numbers that reproduce exactly known Cg(aa) coefficients for systems iso-
electronic with those of interest. For the alkali and alkaline earth cations and halide ions, P,
is chosen to reproduce the C¢(aa) coefficient for the iso-electronic inert gas, while the electron
number of Pb?* is taken from Hg. As there is no system iso-electronic with Ag* whose C;(aa)
coefficient is known from either experiment or accurate ab initio calculation, Py,+ is calculated
from the values of a,,+ and Cg(Ag*™ Ag*) computed (Mahan 1982) by using an approximate
density functional description of exchange and correlation.

The in-crystal polarizabilities for Li*, Na* and Mg** needed in (2.25) are taken to equal
those of the gaseous ions because there is strong evidence that the polarizabilities of small
cations remain essentially unchanged on passing from the gas to the crystal (Fowler & Madden
1983, 1984). These polarizabilities are known accurately from large basis set ab initio calculations
in which the Hartree-Fock prediction is augmented by using second-order Moller—Plesset
perturbation theory to compute the contribution originating from electron correlation (Fowler
& Madden 1983, 1984, 1985). The polarizabilities of the anions in the crystals LiF, NaF, NaCl,
and MgO are calculated by subtracting the known cation values from the molar crystal
polarizabilities derived from experimental refractive index data extrapolated to infinite
wavelength (Fowler & Pyper 1985). For AgF and PbF,, the fluoride ion polarizability is derived
from a function describing the dependence of ay- on the closest cation—anion separation (Fowler
& Pyper 1985). The cation polarizabilities are then obtained by subtracting o~ from the molar
crystal polarizability. The polarizability of Ag* is probably less firmly established than those
of the other cations because there is evidence that a .+ is substantially increased from the free
ion value of 8.6 a.u. to 11.8 a.u. upon entering the AgF crystal (Fowler & Pyper 19853).
However, the use of the free ion electron number to calculate the in-crystal Cy coefficients is
still fully consistent with the approach of deriving P, from iso-electronic model systems. It should
be pointed out that the computed crystal properties of AgF are surprisingly insensitive to the
exact value used for a,,+ provided a value for ap- is used which yields the experimental molar
polarizability (equal to c,,++ag-). The polarizabilities and electron numbers used are
presented in table 3, while the Cy coefficients calculated therefrom are reported in table 4.

TasLE 3. Ion POLARIZABILITIES, ELECTRON NUMBERS AND DISPERSION DAMPING PARAMETERs(

cation anion
crystal o, P, dy, @ o, P, dy, @
LiF 0.192 1.430 3.386 5.983 4.455 1.718
NaF 1.002 4.455 2.918 6.947 4.455 1.606
NaCl 1.002 4.455 2.918 21.153 6.106 1.528
AgF 11.825 5.863 1.514 7.435 4.455 1.567
PbF, 17.924 2.605 2.744 7.783 4455 1.551
MgO 0.486 4.455 3.860 11.345 4.455 1.820

@ Polarizabilities «, and dispersion damping parameters d,, in atomic units.
@ dyy = dy, for all ions except Ag*; dygrp, = 2.336 a.u.
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TABLE 4. INTER-IONIC DISPERSION COEFFICIENTS (IN ATOMIC UNITS)

crystal Ci(CA)  G(CC)  Cy(AA)  G(CA)  G4(CC)  Cy(AA)
LiF 1.130 0.078 23.167 10.587 0278  351.968
NaF 6.061 1.588 28.986 62.655 8.558  443.071
NaCl 13.615 1.588  180.301  209.707 8.558  4582.659
AgF 47.973 71.970 32.093  624.058 762761  494.832
PbF, 53.045 91.858 34372 711.042 1022752  538.779
MgO 4.292 0.536 60.491 58.450 2013  1420.423

The dipole—quadrupole Cg coqﬁcients The coefficients Cg(ab) yielding the dipole-quadrupole
dispersion interaction Cy(ab) 738 were computed from the C¢(ab) coefficients by using the
formula of Starkschall & Gordon (1972)

Cy(ab) = §C4(ab) [({r'>a/<r*Da) + (Kr'Dp/{r"Dp)]- (2.26)

The ground-state expectation values {r*), were computed from the ion wavefunctions which
had to be calculated as input to the relativistic program used to determine the short range Vg,
ion—-ion repulsions. It is shown in Appendix 3 that (2.26) reproduces the Cy(ab) coefficients
known more accurately from other sources.

It is also shown in Appendix 3 that both the approximate expression of Margenau (1939)
and the more recent one of Narayan (1977) are quite unreliable. Thus the Margenau
expression underestimates Cg(ab) for the inert gases by factors which can be as great as five
to eight while overestimating those of the alkali atoms by factors of two or three. The Narayan
formula, however, always seems to underestimate Cg(ab) by factors of four or more.

The Cg(ab) coefficients used in this work which were computed from (2.26) and the Cj
coefficients of table 4 are also reported in table 4.

(iii) The dispersion damping functions

An exact expression, valid in the presence of non-negligible wavefunction overlap, for the
total energy of interaction U% (), between the pair of ions a and b, arising from dispersion
has been presented by Jacobi & Csanak (1975). Their expression is

B =-2 4 % (¢ 7 ) mum

21 (L L
‘4n LIl

o0
f dqf d¢'j;,(gR)jy(gR) T | du

ea eb 0

X [Xe, 1.(9) X, £.(0) (Eg, .= Eo,a) (Eg, 1~ Eo a)* +4%)7"]

X [Xg, 1:(9) Xo, 1(9) (g1 Eo,v) ((Eg, 1= Eo,p)* +4) 7], (2.27)

where j;(x) is a spherical Bessel function (Rose 1961), [L] = 2L+ 1 and E, , is the ground state
energy of ion a. The quantities X, ;, are defined through

Xé () = e (@) Yo (D), (2.28)

where Xe tn(@) = X, (q) = fexp (ig.r) X, (rr)dr. (2.29)
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Here X, (rr) is the one-electron transition density matrix element between the ground state
and excited state ¢, of ion x. The symmetry of atomic systems enables the excited states to be
classified by the quantum number L and M so that the triple label ¢, LM can serve as an
alternative to ¢,. The quantity E, ; is the energy of the excited state &, LM of atom x. It should
be stressed that the transition density matrix element X, (rr) is by definition a one-electron
function even when derived from exact correlated wavefunctions for the ground and excited
state so that its Fourier transform also has this property. Symmetry dictates that the transform
can be factorized according to (2.28).

The term in (2.27) with L = L’ = 1 yields the dipole—dipole dispersion energy, while the sum
ofthathaving L = 1and L’ = 2and the one with L = 2and L’ = 1 yields the dipole-quadrupole
dispersion energy. The quantities X, ,¢) and Xg 2(¢) can be expressed (Csanak & Taylor
ro72) = Xya(0) = D, by qlg+2), (2:30)
Xexz(q) = %Qex dgs *(g*+dgs) ™%, (2.31)

where D, and @, are the dipole and quadrupole transition matrix elements which are
independent of g. The quantities d,, and d,, which are related to the ionization potentials in
the ground and excited state can be taken to a high degree of approximation to be independent
of the particular excited state ¢, (Lassettre 1965; Csanak & Taylor 1972). This approximation
separates the ¢ and ¢’ integrations from the summation over excited states. For L= L =1,
this later summation yields the Cy coefficient, while the terms L =1,L’ =2and L=2,L' = 1
yield two contributions to the Cg coefficient (Buckingham 1967). Hence the dispersion
damping parameters y2"(r) required to calculate the dispersion energy via (2.24) can be
derived by substituting (2.30) and (2.31) into (2.27) and calculating the resulting integrals over
¢ and ¢’ by contour integration. As the resulting algebra is very tedious it was done by using
the algebraic manipulation program REDUCE on the University computer. The resulting
damping functions are

X3 (R) = [1—e %R P,(dy, R)]*+} (dy, R)® [e™%: R P,(d,, R)]?; (2.32)
X5 (R) = [1—e %2R Py(dy, R)]* +15t55 (dgy R) 1 [e7%:2 R P, (dy, R)1?; (2.33)
where Py(x) = g5 (T+Tx+3x2+ 223+ L &%), (2.344)
P,(x) = Iz(x)+§%}5x5+l—}5%3x6+ﬁ%—23x7, (2.345)
Py(x) = By(x) + 55557 + 15855 +° +aaimo 4% (2.34¢)
n
P(x)= X x™/m! (2.344)
m=0
ab dyy _ dpy\7° -dy R —ay,r|
Xi*(R) = \1+d,, dy, 2. 4. [@1(da1s dpys R) 7% R —Q, (d),y, dyy, R) e % R]
b1 al

2 of a1 dpy )7 —dg, R —dyy R72

+3dz, 43, R E;_z: [Q2(days dpys R) €7%1B—Qy(dy,), dyy, R) €7 %2 R]2; (2.35)
a

Qu(x, 9, B) = [y — 542+ 10x%] B,(xR) — R¥[1 + xR +3(xR)*—3(yR)"],  (2.360)
Q:(%, y, R) = —3+ (R/16) [14x71y2 —13x —x3y* + R(2y> — 22— x~%%)]; (2.365)
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XEP(R) = [CPO(ab) ¥2(R) + COP(ab) x2*(R)]/Cy(ab); (2.37)

d —6 2
a8 (R) = {1+ (52— 582) " 104l s R) et Qg B 0]}
2

d d —12
ey R (22 =592 Qg dogs R) = Qg oy R) S5 (2.38)
a2 b2
Qs(%, y, R) = [6x7%y* —x %" — 15x72%] P,(xR) +x%*[(xR)?+ (xR)?]
2
FA[27x7 22 — 26 ] (xR)* — fhox g (%—5) (xR), (2.39a)
Qu(%, y, R) = [20—15x% 72+ 6x"y~* —x%°] P (yR) — (yR)*— (yR)®

3
#3308 28) R+ (3587 —8) R+ bty (=2) e, (2309
Qs(x, y, R) = 5+5xR— (y2—x2) R2+ L (y>—x?)2x1 R, (2.39¢)

Qolx, 4, R) = 5+ 5yR+1(y2 —x2) B2+ (42— 2%)2 (1952 —x%) y > RO+ (4"~ )3y 2 R, (2.394)

The dipole-quadrupole dispersion energy is the sum of two different terms, namely that
(L=1,L" =2 in (2.27)) involving the dipole oscillator strength (2.30) on ion a with the
quadrupole term (2.31) for ion b plus the L = 2, L’ = 1 term which involves the quadrupole
term for ion a plus the dipole term for ion b. As the damping factors for these two terms are
different, the overall damping function (2.37) is a sum of two distinct terms where

Cy(ab) = CP(ab) 4+ CYP(ab). (2.40)

The quantities CP??(ab) and C8P(ab) are calculated as the second and first terms in square
brackets in (2.26) respectively. The result (2.32) for the damping function for the dipole—dipole
interaction between identical ions agrees with that derived by Jacobi & Csanak (1975).

The dispersion damping parameters d,, and d,, are governed by the radius of convergence
of power series (2.30) and (2.31) (Lassettre 1965, Csanak & Taylor 1972) which is determined
by the asymptotic behaviour at large distance from the nucleus of the wavefunctions for the
ground and first excited state contributing to the relevant oscillator strength (2.30) or (2.31).
For a system where the potential experienced by an electron varies inversely with distance (i.e. is
proportional to r7) at large distances r from the nucleus but where the electron density is not
negligible, the dispersion damping parameter d,; is given by

de = \/(2€x0g> + \/(26x0e>7 (2'41>

where €., and €, are the eigenvalues (in atomic units) of the outermost orbitals of the ground

X
and first relevant excited state of system x.

For the halide and oxide ions the outermost orbitals of both the ground np® and excited
np®(n+1) s states have appreciable amplitudes for distances r, > R, (2.18) for which the total
potential experienced by an electron tends to zero as —constant/r,. Hence the dispersion
damping parameters reported in table 3 were calculated from (2.41) by using the eigenvalues,
for the ion computed in the crystal potential (2.18), of the np orbital in the ground np® state
and of the (n+41)s orbital in the np®(n+1)s excited state. As the np®(n+1)s state is the
lowest-energy excited state contributing to both the dipole-dipole and dipole~quadrupole

dispersion energy, d,, equals dy,.
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For all the cations studied except Ag*, the amplitudes of all the orbitals of both the ground
and relevant excited states are negligible for distances o > R (2.20), thus showing that the
crystal potential (2.20) is essentially a constant which merely shifts the eigenvalues of all
orbitals by this constant (¢, /R). This interpretation is confirmed by the result that the
eigenvalue of each orbital of the in-crystal ion is identical to the sum of the corresponding
eigenvalue of the free ion plus ¢, /R and by the result that the expectation values (") of
the free and crystal orbitals are identical. Hence the parameters d,, and d,, for the alkali and
alkaline earth cations except Li* were derived from the free ion eigenvalues of the np orbitals
of the ground np® state and of the (n+ 1) s orbital in the np®(n+ 1) s excited state. For Lit and
Pb**, d,, and d,, were derived from the free ion eigenvalues of the 1s and 6s orbitals orbitals
in the respective 1s? and 6s? ground states and of the 2p and 6p orbitals in the respective 1s2p
and 6s6p excited states. '

The free and in-crystal 5s orbitals of the Ag* 4d°5s state, which is the lowest excited state
contributing to Cy coefficients involving Ag*, have identical {r"}, are negligible for r, > R and
have eigenvalues differing by @, o/ R. The parameter d,,+, was therefore calculated by using
(2.41) from the free ion eigenvalues of the 4d orbital in the 44'° ground state and of the 5s
orbitals in the 4d°5s state. The 44°5s state does not contribute to any C, dispersion energy, the
4d°5p state being the lowest energy contributor to the Ag* dipole oscillator strength. However,
this state has {r);;, = 5.38 a.u. in the crystal but {r)>;, = 3.71 a.u. in the free state showing
that the 5p orbital does experience the spatial region in the crystal where the potential varies
as —constant/rq. The parameter d,,+,, was therefore calculated from the free ion eigenvalue
of the 44 orbital in the 44" ground state and from the in-crystal eigenvalue of the 5p orbital
in the 44%5p state.

All the dispersion damping parameters used are reported in table 3. The reliability of
the computed dispersion damping functions can be assessed from the results presented in
Appendix 4.

3. CRYSTAL PROPERTY PREDICTIONS
(a) Comparison of wavefunctions

In table 5 are shown the lattice energy, closest equilibrium inter-ionic separation R, and
compressibility for LiF, NaF, NaCl, AgF and PbF, predicted from (2.164) for three different
descriptions of the ionic wavefunctions (2.2) both with and without the damped dispersion
energy Uiy (see (2.22)). In all the calculations reported in this table the uncorrelated
short-range cation—anion repulsions V., (R) ((2.14) and (2.8)) were computed exactly by
using the relativistic integrals program RIP, but the cation—cation and anion—anion uncor-
related short-range interactions were calculated from the Lloyd & Pugh exchange corrected
electron-gas method (Lloyd & Pugh 1977; Wood & Pyper 1981). Each ion was taken to
contribute eight electrons to the total number of valence electrons per ion pair needed to
evaluate the Lloyd & Pugh exchange correction factor, except for Li*, Ag* and Pb%*, which
were taken to contribute two, ten and twelve electrons respectively (Wood & Pyper 1981).
The electron-gas correlation contributions VY, VEEE, VEUT) to the short-range potentials
were included in all the calculations reported in table 5. The cation—anion short-range
potentials and re-arrangement energies (2.11) are reported in Appendix 5.

Three main conclusions can be drawn from the results of table 5. First, the use of free ion
wavefunctions, whether without (column 1) or with (column 4) the damped dispersion energy,


http://rsta.royalsocietypublishing.org/

/

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY L\

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

128 N. CG. PYPER

TABLE 5. COMPARISON OF CRYSTAL PROPERTIES PREDICTED WITH DIFFERENT
ION WAVEFUNCTIONsS(!)

without dispersion® computed with (2.16)®®
wavefunction type® wavefunction type®
(2.18) (2.18)
free®  Watson® +(2.20) free Watson  +(2.20) experiment
LiF D, 944 991 992 957 1006 1007 1036®
R, 4.24 4.05 4.03 4.19 4.02 3.99 3.80"
B 4.43 7.98 7.75 5.08 8.63 7.05 6.98® 7.2(9 8 7010 1))
NaF D, 880 908 908 896 925 927 923 931012
R, 4.62 4.48 4.46 4.57 4.44 441 4.38
B 4.58 5.43 5.05 4.85 5.78 5.50 5.1409 51702
NaCl D, 720 738 738 742 763 765 77309 786(®
R, 5.72 5.57 5.65 5.61 547 5.43 5.330%
B 2.08 2.54 2.33 2.33 2.87 2.67 2.66(12 27408
AgF D, 870 877 874 930 940 934 942015 95304
R, 4.85 4.77 4.83 4.73 4.655 4.70 4.6617
B 5.19 6.12 5.32 6.29 7.46 6.40 —
PbF, D, 2248 2276 2311 2330 2385 2406 249149
R, 5.17 4.86 5.03 5.05 4.77 4.90 4.8617
B 4.49 7.89 5.34 5.37 9.39 6.26 6.084%) 6,2719

@ D, lattice energy in kilojoules per mole; R, in bohr, B in 10*2 newtons per square metre extrapolated to low
temperature except PbF,.

@ All calculations included Vg, (R) computed with RIP; Vosq (xocR) and V44 (x44 R) computed with the
Lloyd & Pugh exchange corrected electron-gas method, and short-range correlation terms VS8 (R), VO (¥cc R)
and ViRl (xaa R).

® Includes damped dispersion energy (2.22).

@ Free: free ion wavefunctions; Watson: cation and anion wavefunctions computed in potential due to the
Watson shell of total charge equal to minus the ion charge and radius equal to the ionic radius; (2.18) +(2.20):
cation wavefunctions with description (2.20) of the environment and anion wavefunctions computed with (2.18).

®) From Wood & Pyper (1986).

® Weast (1979, C.R.C. handbook). 11 Cohen & Gordon (1975). 19 Frigate & Scheule (1966).

™ Muhlhausen & Gordon (19814a). (2 Vallin et al. (1966). (7 Landolt-Bornstein (1973 a).
® Briscoe & Squire (1957)- 3 Lewis et al. (1967). 8 Samara (1976).

® Kittel (1966). 9 Johnson (1968). (9 Rimai & Sladek (1980).
9 Susse & Rech (1961). @5 Tosi (1964).

predicts insufficiently strong binding as manifested by calculated lattice energies and
compressibilities that are too small and calculated R, values that are too large. This shows that
the environmentally induced modifications of the free ion wavefunctions cannot be ignored if
the crystal properties are to be described accurately. The second main conclusion to be drawn
from table 5 is that the predictions of calculations that use wavefunctions computed in the
potential of a Watson shell are not trustworthy. For LiF, NaF and NaCl the use of such
wavefunctions yields results very similar to those derived from wavefunctions computed with
the environmental potentials (2.18) and (2.20).

These predictions are similar because the Li* and Na* wavefunctions are so tightly bound
that the Watson shell potential, which incorrectly decreases for distances 7. greater than the
cation radius R, fails to perturb significantly the free ion wavefunctions, while for anions at
R values close to R,, the Watson shell potential is similar to (2.18). For anions at R = R, the
Watson shell radius, which is taken to equal the anion radius (Watson 1958; Schmidt ez al.
1979), is virtually identical to that of (2.18) constructed as R—R¢ simply because R, is
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approximately the sum of the cation and anion radii. However, for PbF, without dispersion,
the use of wavefunctions computed in the Watson shell potential predicts a lattice energy which
is too small but a compressibility which is too large (column 2 of table 5). The perfect
agreement between observed and calculated R, values is clearly fortuitous because any
incorporation of dispersion must reduce the predicted R, to a value less than the experimental
one. Indeed the addition of the damped dispersion energy (column 5 of table 5) predicts too
small an R, value, increases even more the too large compressibility of column 2, while still
predicting too small a lattice energy. This unphysical combination of discrepancies between
theory and experiment shows that the theoretical shortcomings of the Watson shell potential
discussed in §24 cannot be ignored and hence that the Watson shell model should be regarded
as unsatisfactory. For Pb?* the Watson shell potential fails not only because it incorrectly
decreases for 7 > R but also because it is too large (0.87 a.u.) for 7, < R, the potential (2.20)
due to a point charge lattice being only 0.67 a.u. at 7o < R for R = R,. Both these failures cause
the Pb?* wavefunction to be too expanded ({r)¢, = 2.60 a.u. compared with {r)¢, = 2.23 a.u.
with the potential (2.20)) leading to an excessively high re-arrangement energy (2.11) of
187 kJ mol™ compared with 0.2 kJ mol™ at R = R, for the wavefunction computed with the
crystalline potential (2.20).

The third main conclusion from table 5 is that the predictions derived by using wavefunctions
calculated with the description (2.18) and (2.20) of the crystalline potential do not suffer from
the deficiencies of those derived by using either free ion wavefunctions or wavefunctions
calculated in the Watson potential. In particular, the predictions (column 6 of table 5) derived
with the inclusion of the damped dispersion energy not only agree fairly well with experiment
but also show a systematic and physically sensible trend in their discrepancies with experiment.
This the predicted lattice energies are always slightly too small with predicted R, values slightly
too large; this suggests that the entire crystal cohesion is slightly underestimated.

(b) Predictions with exact non-correlated short-range potentials

The conclusions of the last section, that the potentials (2.18) and (2.20) satisfactorily describe
the environmentally induced modifications of the ion wavefunctions but that the crystal
cohesion is slightly underestimated, suggest that the calculations should be repeated computing
exactly, with the RIP program, all the uncorrelated short-range interactions. The results
of such calculations, both with and without the inclusion of correlation, dispersion and
dispersion damping are reported in table 6.

It is known that the crystal properties derived from Up(R) values computed for a finite
number of values of R can depend on the numerical method used if this is not carefully chosen.
The lattice energies, R, values and compressibilities were derived from the best calculations
(column 6) by fitting a polynomial of the highest possible order in (R—R,)/R to the total
crystal cohesive energies Uy (R). It will be shown in detail elsewhere that the results of this
procedure, recommended as numerically stable (Simons et al. 19%73), remain essentially
unchanged if either the order of the polynomial is changed or if the number of points used to
define the potential Uy, (R) is reduced. It will also be shown that the results derived by fitting
the highest-order polynomial in R to all the points are identical to those derived from the
(R—R,)/R fits. That method was used to derive all the results presented in this paper except
those in column 6 of table 6.

In all the calculations reported in table 6, the anion—anion and cation—cation uncorrelated
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TABLE 6. CRYSTAL PROPERTIES PREDICTED BY USING THE RIP PROGRAM WITH ION
WAVEFUNCTIONS COMPUTED WITH THE ENVIRONMENTAL DESCRIPTION OF §2 6

(1H® (2) 3) (4) (®) (6)

undamped correlation
undamped dispersion+ damped +damped
dispersion  correlation correlation dispersion  dispersion  experiment®

LiF D, 1002 1032 1054 1021 1018 1038 1036

R, 3.97 3.86 3.81 3.92 3.93 3.885  3.808

B 7.13 7.88 8.60 7.15 7.66 8.16 6.98, 7.2, 8.67
NaF D, 901 935 953 916 919 938 923, 931

R, 4.48 4.33 4.28 4.43 4.42 4377  4.378

B 4.88 5.51 5.97 523 5.29 5.69 5.14,5.17
NaCl D, 732 767 788 749 758 778 773, 786

R, 5.56 5.36 528 5.48 5.44 5363  5.329

B 2.29 2.77 3.10 2.57 2.70 2.99 2.66, 2.74
AgF D, 847 1023 1086 881 906 944 942, 953

R, 4.87 4.29 4.19 4.77 4.73 4.642  4.658

B 4.57 8.62 10.99 5.21 5.58 6.37 —
PbF, D, 2288 2464 2530 2336 2380 2433 2491

R, 5.06 4.72 4.64 4.99 4.93 4.866  4.861

B 5.20 6.57 744 5.62 6.01 6.56  6.08, 6.27, 6.53®
MgO D, 2922 2997 3050 2972 2968 3020 3038

e 4.17 4.06 4.03 4.14 4.12 4.09 3.979
B 17.0 17.4 18.1 17.6 17.8 18.8 17.5

@ See first note to table 5. UY,(R) computed by using only the RIP program.

@ TIncludes neither dispersion nor correlation, i.e. predictions from U (R) (2.15).

® See notes to table 5 for references. MgO data as follows. D,: Muhlhausen & Gordon (1980); R,:
Landolt-Bornstein (19736); and average of these different results is reported by La & Barsch (1968).

@ Estimated value at 0 K Samara (1976).

short-range interactions V2, , (x4 4 R) and Vi (¥cc R), as well as the uncorrelated short-range
cation—anion interactions, were computed exactly with the RIP program with ion wavefunctions
computed with the description (2.18) and (2.20) of the environment. Thus the electron-gas
method is not used to calculate any uncorrelated short-range potential, this method being
retained only to estimate the short-range correlation contributions VoIr(x,, R). All the
potentials computed are presented in detail in Appendix 5. As the uncorrelated short-range
interactions are calculated exactly with wavefunctions well adapted to the crystalline environ-
ment, the results of this series of calculations can be used both to test the accuracy of the
electron-gas predictions of the uncorrelated short-range interactions and to probe the role of
the correlation, dispersion and dispersion damping. It should be pointed out that such tests
have not been possible hitherto because a program such as RIP, which can calculate both
relativistically and exactly the energy of interaction of two ions such as Pb%*'  a system
containing 156 electrons, has not been previously available.

Six main conclusions can be drawn from the series of calculations reported in table 6. First,
the use solely of the exact uncorrelated short-range potentials (column 1) always predicts
insufficient crystal cohesion as manifested by lattice energies and compressibilities that are too
small, R, values that are too large. This shows that either correlation or dispersion plays a
non-negligible role in determining crystal properties. Second, the results in column 4 computed
by including also the estimate of correlation provided by the electron-gas method show that


http://rsta.royalsocietypublishing.org/

JA \
! B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A Y

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

AB INITIO CALCULATIONS FOR IONIC SOLIDS 131

dispersion cannot be neglected because the lattice energies are still underestimated and the R,
values overestimated. This underestimation (column 4) of the crystal cohesion increases as the
polarizability of the constituent ions increases and becomes particularly marked for AgF and
PbF,, the systems where dispersion might be expected to be most important. Third, it is not
correct to introduce the dispersion series in its undamped form. The use of undamped
dispersion (column 2), even without correlation, very seriously overestimates the cohesion of
AgF while predicting for PbF, the undesirable combination of too small a lattice energy at too
small R,. The deficiency of omitting any form of dispersion damping is masked for the other
systems studied because these have much smaller dispersion coefficients. The deficiencies of the
undamped dispersion treatment are accentuated (column 3) if the correlation energy is also
included, all the lattice energies being overestimated. Fourth, the second conclusion showed
that the dispersion energy must be included while the third conclusion showed dispersion
damping to be necessary, but the use of damped dispersion without correlation predicts
insufficient cohesion (column 5) as manifested by too small lattice energies and too large
predicted R, values. This shows that use of the damped dispersion energy alone is not sufficient
and that one must include also some estimate of that portion of the correlation energy which
is non-zero solely by virtue of the overlap of the ion wavefunctions.

The fifth conclusion from table 6 is that the closest anion—anion (V2 , (x4, R)) and for AgF
and PbF, the closest cation—cation (V& (*ccR)) uncorrelated short-range interactions are
sufficiently important that significant errors arise if these are calculated, not exactly by using
RIP, but by using the electron-gas approach. Thus comparison of either column 4 of table 6
with column 3 of table 5 or of columns 6 of tables 5 and 6 shows that use of the exchange
corrected electron-gas method overestimates these short-range repulsions thus predicting
insufficient crystal cohesion. This difficulty is especially marked for systems such as LiF and
PbF, which have the smallest anion—anion separations x,, R. The electron-gas method
overestimates both the short-range Ag*—Ag® interaction and all the short-range anion—anion
repulsions. (See Appendix 5.) The computations show that the short-range cation—cation
interactions (2.16 ) are negligible for Li*, Na* and Mg?** while showing that the uncorrelated
short-range Pb**-Pb** interaction although underestimated by electron-gas theory is less
important than that F~—F~ uncorrelated short-range repulsion which the electron-gas approach
overestimates.

The sixth conclusion to be drawn from table 6 is that the predictions of the highest level
of theory (column 6), in which the uncorrelated short-range interactions computed exactly
with RIP are augmented by both the correlation energy and damped dispersion series, agree
well with experiment. Thus all the computed lattice energies lie within the experimental
uncertainties except for the large PbF, value which is slightly underestimated. The closest
cation—anion equilibrium separations R, also agree well with experiment. The values of the
Cy coefficients and hence the Cy coefficients for AgF are less firmly established than the other
dispersion coefficients reported in table 4 because the individual Ag* and F~ polarizabilities
in AgF are less well established, with only their sum, the molar crystal polarizability of AgF,
being known accurately (Bottger & Geddes 1972; Fowler & Pyper 1985). However, use of the
much lower free ion polarizability for Ag* of 8.3 predicted by an accurate ab initio scr
calculation (Fowler & Pyper 1985) with a new F~ polarizability chosen to reproduce the known
molar polarizability, although substantially changing the dispersion coefficients calculated
from (2.25) and (2.26), hardly changes the predicted crystal properties. Thus the predicted
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lattice energy remains unchanged from the result of column 6, while the calculated R, and
compressibility only change to 4.645 a.u. and 6.35 x 102 N m™2,

Unlike the other values reported in table 6, the experimental compressibility of PbF, was
measured at room temperature and can therefore be expected to be smaller by approximately
109, than the 0 K value which is directly comparable with the calculations. Indeed a value
of 6.53 x 10’2 N m™2 has been estimated for PbF, (Samara 1976) by assuming the temperature
dependence to be the same as that of the alkaline earth halides. As the second nearest neighbour
F~—F~ separation in PbF, is the same as the nearest Pb?*—Pb?* one, it is a priori inconsistent
to include the latter while excluding the former. However, the inclusion of the second nearest
neighbour F~~F~ total short-range potential (2.165) calculated as the sum of the exactly
computed uncorrelated short-range interaction plus the electron-gas correlation energy did not
change the predicted lattice energy and R, from the values reported in column 6 while only
changing the predicted compressibility to 6.53 X 10'> N m~2. The total short-range potentials
(2.165) for the second nearest anion—anion interactions were only 107% a.u. and 6 x 107% a.u.
for LiF at R = 3.75 and MgO at R = 4.0 respectively, thus showing that second nearest
anion—anion short-range terms can be neglected in the present studies.

The MgO results presented in table 6 appear to be the first ab initio calculations including
the oxide-oxide short-range interaction, not based entirely on the electron-gas method, to yield
sensible predictions as discussed in §5. The discrepancies between theory and experiment are
only insignificantly greater than for the other systems in that the predicted R, is too large by
0.11 a.u. compared with a maximum discrepancy of 0.08 a.u. for the remaining crystals
studied. Thus the three crystal properties examined do not provide any evidence for a
significant covalent contribution to the cohesion of MgO.

The cation wavefunctions are only minimally affected by the environmental potential
(2.20); consequently the Agt—Ag* and Pb**~Pb?* potentials (Appendix 5) computed with the
RIP program should be transferable to any crystal containing these cations. It has not so far
been possible to extract these potentials from experimental data while the size and relativistic
nature of these cations has hitherto precluded their computation ab initio.

4. ANION-ANION POTENTIALS
(a) Comparison of ab initio methods

The ab initio computation of short-range anion—anion potentials is of current interest (Catlow
et al. 19777; Catlow 1977; Kendrick & Mackrodt 1983) because it has not so far been possible
to extract these from empirical fits to experimental crystal properties. For the anion
wavefunctions generated with the environmental potential (2.18), the uncorrelated short-range
anion—anion potentials computed exactly with the RIP program are compared in Appendix 5
with those predicted by the Lloyd & Pugh (1977) and Waldman—-Gordon (1979) modifi-
cations of electron-gas theory.

The Waldman—Gordon modification of electron-gas theory scales both the kinetic and
exchange contributions to the interaction energy predicted by the original electron-gas
approach (Gordon & Kim 1972) by factors derived from a Hartree-Fock calculation for one
atom having the same number of electrons as two anions. These factors are calculated as the
ratio of the total kinetic or exchange energy computed from atomic Hartree-Fock theory to
the corresponding total energy predicted by electron-gas theory with the same Hartree-Fock
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electron density. For the F"—F~ and O?™—O?" interactions these correction factors were taken
to be the same as those for the interaction of a pair of neon atoms (Waldman & Gordon 1979).
However, as the derivation of correction factors from the total number of electrons is
objectionable (Wood & Pyper 1981) because the core electrons do not contribute actively to
the interaction energy (Clugston & Pyper 1979), the Waldman—Gordon correction factors for
the CI™—Cl~ interactions were taken to be the same as those for the F—F~ and O*>™-0?%"
interactions.

Ab initio calculations at both the Hartree-Fock molecular orbital and configuration
interaction levels have been done for dimers A3?~ (Catlow & Hayns 1972; Kendrick &
Mackrodt 1983) in attempts to calculate non-empirically the interaction potential for a pair
of A?" anions. However, the interaction energy calculated by subtracting the energy of two
isolated A?” ions from the ab initio energy of the dimer A9~ does not yield the desired
anion—anion potential because the nuclei in the dimer do not lie on a centre of symmetry so
that the ab initio electron density for A2?™ is polarized along the A9"—A?~ direction. Interaction
energies calculated by this method will be too low because such polarization of the A?~ electron
density is necessarily absent in the crystal where each A?™ ion does lie on a centre of symmetry.
This shows that the energy associated with this polarization must be subtracted from the
computed interaction energy if one is to obtain a potential relevant to the anions in the crystal.
It has been suggested (Kendrick & Mackrodt 1983) that the polarization energy to be
subtracted can be calculated by subtracting the energy of an isolated A?” jon from the energy
of one anion computed in the presence of a point charge of magnitude —g¢ located at the
position of the second nucleus in the dimer. However, it is far from clear that this procedure
will yield even a reasonable estimate of the polarization energy because in the A~ dimer each
A% jon is polarized by another A?” ion whose spatial charge distribution is very different from
that of a point charge. The approach adopted here of calculating the anion wavefunctions in
the presence of a potential such as (2.18), whose symmetry is consistent with the anion site
symmetry in the crystal, avoids these problems because no spurious polarization energies are
introduced.

(b) Halide—halide interactions
(1) Short-range potentials

The halide-halide potentials VI, , (x4, R) (2.16) in different crystals containing the same
halide ion are not identical because the halide wavefunctions are crystal dependent as a result
of the anion contractions induced by overlap with neighbouring cation orbitals being
dependent on the cation size. The magnitude of these variations, which may need to be
considered in empirical fitting procedures assuming a single transferable halide—halide
repulsion, can be gauged from the detailed potentials presented in Appendix 5. The Lloyd &
Pugh (1977) variant of electron-gas theory overestimates the uncorrelated short-range
halide-halide repulsions V2, (x5, R) (2.14) in all the crystals studied, while the Waldman-—
Gordon (1979) variant also overestimates these repulsions, at all but very large R in LiF, NaF
and PbF, excepting R = 3.0 for NaF. The Waldman-Gordon approach, however, under-
estimates V0, , (x4, R) in AgF and NaCl.

For fluorides having the NaCl structure, the dependence of V¢, ,(x,, R) evaluated at
constant R (= 4.0 a.u.) upon the size of the cation is shown by the results presented in
table 7. The size of the fluoride ion decreases on passing from the free ion through that in LiF and
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TaBLE 7. COMPARISON OF UNCORRELATED SHORT-RANGE F~—F~ INTERACTIONS V0, , (44/2)
FOR R = 4.0 a.u.

F~ wavefunction type®

method® free in LiF in NaF in AgF
electron LP 0.00395 0.00272 0.00218 0.00199
gas WG 0.00228 0.001 61 0.00128 0.00116
exact RIP —0.00014 0.00095 0.00118 0.00127

) Computed by using the description (2.18) of the environment for last three columns.
@ LP;Lloyd & Pugh exchange corrected electron-gas method ; WG: electron gas method with Waldman-Gordon
correction factors for kinetic and exchange energies.

NaF to the most compact in AgF as the size of the cation increases. Consequently, it is not
surprising that both variants of electron-gas theory predict V2, , (x4 R) to decrease along this
series because the magnitudes of the kinetic and exchange components of the interaction energy
depend solely on the overlap of the electron densities which clearly decreases as the anions
become more compact. However, the actual uncorrelated short-range interactions V2, , (44/2),
computed exactly with the RIP program, increase along this series from attraction between
the free ions to the greatest repulsion in AgF. The electron-gas method completely fails to reveal
this subtle trend. Although this trend and the short-range attraction between the free anions
were not expected and, in addition calculated with a new computer program, it is shown in
§5b that the present results are completely trustworthy.

The practical importance of the differences between the electron-gas and the RIP predictions
computed exactly of second nearest neighbour uncorrelated short-range interactions can be
assessed from the results of table 8. In all these calculations that use wavefunctions computed
from the potentials (2.18) and (2.20), the closest cation—anion interaction V., (R) was
computed with the RIP program, the short-range electron-gas correlation and damped
dispersion energies were both included so that the calculations differ only in the uncorrelated

TABLE 8. CRYSTAL PROPERTIES PREDICTED FROM DIFFERENT METHODS OF COMPUTING THE
UNCORRELATED SHORT-RANGE CATION—CATION AND HALIDE-HALIDE INTERACTIONS(I)

LiF NaF NaCl
electron-gas® electron-gas® electron-gas®
LP WG RIP LP WG RIP LP WG RIP
D, 1007 1025 1038 927 935 938 765 781 778
R, 3.99 3.94 3.88 4.41 4.38 4.38 5.43 5.35 5.36
B 7.06 7.63 8.16 5.50 5.71 5.69 2.67 2.82 2.99
AgF PbF,
electron-gas(® electron-gas®
LP WG RIP LP WG RIP
D, 934 944 944 2406 2425 2433
R, 4.70 4.67 4.64 4.90 4.88 4.87
B 6.40 6.70 6.37 6.26 6.47 6.56

@ See first note to table 5. In all calculations the wavefunctions are computed by using the descriptions (2.18)
and (2.20) of the environment; V4 (R) is computed with the RIP program and both correlation and damped
dispersion are included.

® LP and WG (see second note to table 7) denote the different electron-gas methods to compute Vioo(xcc R)
and Vi (¥aa R).
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short-range cation—cation V.. (¥cc R) and anion—anion V2, 5 (x4 5 R) potentials. For LiF, NaF
and NaCl the total short-range cation—cation interactions Vo (xcc R) are negligible so that
variations of the predicted crystal properties arise from differences in the uncorrelated
short-range halide—halide interactions. The deficiency or excess of the crystal cohesion predicted
by electron-gas theory compared with the RIP results is directly related to the over or
underestimation of the uncorrelated short-range halide-halide potentials V2, , (x4 4 R) shown
by the results of table 7 and Appendix 5. For PbF,, both electron-gas approaches erroneously
predict (Appendix 5) the short-range Pb?*—Pb?* interaction to be almost negligible. However,
the overestimation of the short-range F~—F~ interaction by the electron-gas theory more than
outweighs the underestimation of the Pb?"-Pb?* interaction so that both electron-gas
approaches very slightly underestimate the crystal cohesion. The Lloyd and Pugh electron-gas
method overestimates both the uncorrelated short-range F—F~ and Ag*-Ag* interactions in
AgF thus predicting insufficient crystal cohesion while in the Waldman—Gordon approach the
underestimation of V2, , (x,, R) partially cancels the overestimation of V(%o R) to yield
predictions similar to those computed with the RIP program.

(ii) Critique of ab initio dimer calculations

The short-range F™—F~ interaction cannot be calculated meaningfully by minimal basis set
Hartree—Fock molecular orbital calculations (Catlow & Hayns 1972) because this overesti-
mates the repulsion by an order of magnitude over the entire range of relevant inter-nuclear
separations as noted previously (Catlow et al. 1977; Kendrick & Mackrodt 1983). Larger basis
set Hartree—Fock molecular orbital results (Kendrick & Mackrodt 1983) do not appear to yield
reliable values for V2, , (x, o R) even after correction for spurious polarization energies. Thus
such calculations predict uncorrelated short range F~—F~ repulsions of 0.0014, 0.0032 and
0.0055 a.u. for R = 4.0, 3.7 and 3.5 a.u. compared with V¢, , (x4 , R) values of —0.00015 (this
work), 0.000063 (Andzelm & Piela 1977) and 0.00037 a.u. (Abarenkov & Antonova 1970)
computed from free ion wavefunctions. The Hartree—Fock molecular orbital results are taken
from figure 2 of Kendrick & Mackrodt (1983). Thus the variation principle shows that the
description of F~ provided by an antisymmetrized product of two free fluoride ion wavefunctions
is superior to that derived by correcting the molecular orbital result with the polarization
induced by a point charge. The very similar configuration interaction results (Kendrick &
Mackrodt 1983) have the same problems.

As the calculation (Kendrick & Mackrodt 1983) did not consider the influence of the
environment including that of the cations, it is hard to see how the results can accurately
provide the information of primary interest on the anion—anion potential in the crystal. It
should be pointed out that any similarities between the Kendrick & Mackrodt (1983) results
and the in-crystal V¢, , (x4, R) reported in Appendix 5 have little significance because, in the
former, the energy of the two interacting ions is measured relative to that of two isolated free
fluoride ions, while in the latter the energy is measured relative to that of two separate fluoride
ions having wavefunctions (2.2) computed with the environmental potential (2.18) with the
appropriate crystal spacing R. Thus the quantities directly comparable with the Kendrick &
Mackrodt (1983) calculation are those obtained by adding twice the re-arrangement energy
(2.11) of one ion to the V2, 4 (x4 4 R) values of Appendix 5. There is no similarity between these
two sets of results.

14 Vol. 320. A
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(iii) Total non-point coulombic interaction

The total interaction energy between a pair of anions excluding the point coulomb term
g4/ (x4 A R) but including the uncorrelated short-range term (2.14), the short-range correlation
energy entering (2.164) and the damped dispersion energy constitutes the total non-point
coulombic interaction V3iR¢(x, 4 R) given by

VER®(xaa R) = Viaa(xan B) + VEQX (244 R) +X€A(xAA R) Co(AA) (x40 R)7S

x5 (%aa B) Co(AA) (x5, R)S. (4.1)

These quantities are of interest because it has been suggested (Catlow et al. 19777) on the basis
of semi-empirical fits to experimentally determined properties of alkali halide crystals that the
interactions (4.1) are attractive at halide-halide distances 4/2R for values of the closest
cation—halide separation R near to equilibrium R,,. However, this conclusion was not supported
by the results of ab initio calculations at either the Hartree-Fock or configuration interaction
levels (Kendrick & Mackrodt 1983).

The total non-point coulombic anion—anion interactions in NaF and NaCl are derived from
the first of the two sets of potentials presented by Catlow et al. (1977) by adding a Born—-Mayer
type repulsion derived from electron-gas calculations to the attractive term —2C__(4/2R)™®
in which the constant C__ was impirically determined. The factor of two enters the attractive
term because the total cation—cation and anion—anion dispersive attractions were arbitrarily
divided equally between the cation—cation and anion—anion interactions, whereas the dispersive
attraction between pairs of Na* ions is negligible for R in the vicinity of R,. For values of
R > 4.5 in fluorides and R > 5.25 in NaCl each anion-anion potential in the second set
(table 3 of Catlow et al. 1977) can be represented accurately by the semi-empirical dispersive
term —C__(1/2R) ™%, where C__is not in general the same as that entering the first potential set.
For R values near equilibrium in NaF, NaCl and AgF, the halide-halide attractions calculated
from both the parameter sets reported by Catlow et al. (1977) are compared in table 9 with
the present ab initio predictions for the quantities (4.1). All three sets of results are in qualitative
agreement that the total non-point coulombic interaction (4.1) between a pair of halide ions
is attractive at R near R, in distinction to the repulsion derived from the ab initio calculations
(Kendrick & Mackrodt 1983) believed to be less reliable (see previous section).

TABLE 9. COMPARISON OF SEMI-EMPIRICAL NON-POINT COULOMB HALIDE—HALIDE INTERACGTIONS
WITH PREDICTIONS OF THE RIP PROGRAM WITH HALIDE WAVEFUNGCTION COMPUTED
ACCORDING TO §2b (DATA IN ATOMIC UNITS)

RIP computations semi-empirical f
crystal R 0a(V2R) VI .(v/2R) VERS(4/2R) set 1 set 2
NaF 4.5 0.00028  —0.00003 —0.00042 —0.00039 —0.00067
AgF 4.5 0.00031  —0.00002 -0.00040 —0.00039 —0.00067
AgF 4.75  0.00016 —0.00040 —0.00038 —0.00032 —0.00049
NaCl 525 0.00092 4+0.00019 —0.00101 —0.00029 —0.00165
NaCl 5.5 0.00049 —0.00009 —0.00103 —0.00031 —0.00125

t Catlow et al. (1977).
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The strong empirical element of the total non-point coulombic halide-halide potentials for
NaF and NaCl (Catlow ¢t al. 1977) should ensure that these reflect at least partly the true
interaction in the crystal. This coupled with the results presented in table 9 provides some
indirect evidence for the accuracy of the present ab initio potentials. The re-arrangement energy
(2.11) necessarily present in ab initio lattice energy calculations based on (2.15) or (2.16) is
probably absorbed without explicit consideration into the semi-empirical cation—anion potential
in the semi-empirical theory (Catlow et al. 1977). However, the semi-empirical C,, and C__
coefficients should be regarded with some caution. Thus from the parameter set 2 the
coefficients C__ of 45 and 277 a.u. (Catlow et al. 1977) for the F—F~ and interactions appear
to be too large as judged by the C,(AA) coefficients reported in table 4 for C__ (1/2R)™® to
be equated to the dipole-dipole dispersion energy. This suspicion that C__(+/2R)™® does not
equal the dispersion energy but contains a substantial component correcting both for errors
in the short-range potential and the lack of dispersion damping is confirmed by the
semi-empirical value (Catlow et al. 1977) for C,, for the K*-K* interaction of 87 a.u. This
is over three times the accurate ab initio value for Cg(KTK*) of 23 a.u. (see Appendix 2, Fowler
et al. 1985).

Itshould be noted that for NaF at R = 4.5, NaCl and AgF the present prediction of non-point
coulombic halide-halide attractions does not depend on the electron-gas correlation energy
since the sum of V2, , (x4, R) and the dispersion contribution in (4.1) alone is negative. An
alternative view shows that at the larger halide-halide separations the total short-range
interaction VX, 4 (x44 R) (2.165), excluding the dispersion energy is attractive.

(¢) The oxide—oxide interaction

(1) Ab initio potentials

The data presented in Appendix 5 shows that the Lloyd & Pugh (1977) and Waldman-
Gordon (1979) modifications of electron-gas theory both predict uncorrelated short-range
0O27—0?" interactions which are too repulsive for R > 3.5 compared with that computed by
using the RIP program. That program yields the exact uncorrelated potential given the oxide
wavefunctions predicted with description (2.18) of the crystalline environment. Furthermore,
both the electron-gas approaches fail to reproduce the attractive tail of the true potential
Vo a(v/2R) for R > 4.25.

The significance of the differences between the electron-gas potentials and that computed
with the RIP program is shown by the comparison, table 10, between the crystal properties

TABLE 10. MgO CRYSTAL PROPERTIES PREDICTED FROM DIFFERENT METHODS OF COMPUTING
THE UNGORRELATED SHORT-RANGE OXIDE—OXIDE INTERACTION

method of computing Vi (v/2R) + V2 A (v 2R)
electron-gas

omitted LP WG RIP  experiment®
D, 2997 2878 2936 3020 3038
R, 3.99 4.16 4.12 4.09 3.98
B 17.9 16.0 16.7 18.8 17.5

@ See first note to table 5. All calculations use wavefunctions computed from descriptions (2.18) and (2.20) of
the environment: compute Vg, (R) from RIP, include V8Y (R) and damped dispersion, VT (4/2R) and VEIT (1/2R)
included in last three calculations.

@ See third note to table 6.

14-2
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predicted with the different O>*—O?~ potentials. In all these calculations, table 10, the
Mg?*-O?~ potential is calculated exactly with the RIP program, the correlation and damped
dispersion energies are both included while the short-range interaction between a pair of
cations, although included, is negligible. The results show that neglect of the short-range
O%7-0O% interaction predicts too small a lattice energy (column 1, table 10) which is further
reduced (columns 2 and 3) on inclusion of the purely repulsive short-range V1, , (v/2R) (see
(2.16 5)) O*—~O%*" electron-gas potentials. However, introduction of the RIP short-range
oxide-oxide potential increases the predicted lattice energy to a value close to experiment
because the total oxide—oxide short-range contribution (equal to 6VZ, , (1/2R)) to the crystal
binding energy (2.15) is attractive by 17.2 and 42.2 k] mol™, for R = 4.0 and 4.25 a.u.
respectively.

(ii) Comparison of semi-empirical and ab initio non-point coulomb interactions

The total non-point coulombic interaction (4.1) between a pair of oxide ions calculated with
the RIP program is compared in table 11 both with the predictions of electron-gas theory and
with those derived (Catlow et al. 1976) from a semi-empirical fit to observed properties of MgO.
That potential was constructed by first fitting the function 4 exp (—+/2R/p)—C__(1/2R)™*
to the results of ab initio Hartree-Fock molecular orbital calculations for the dimer (O7),
(Catlow 1977) and then using this function to describe the MgO crystal adjusting further the
constant C__ to reproduce experimental data. This constant, predicted to be 34.1 a.u. from the
ab initio calculation, is only changed to 48.4 a.u. on the further adjustment. As simple molecular
orbital theory predicts two O~ ions to form a covalent bond of unit bond order, it is hardly
surprising that the resulting non-point coulombic interaction (Table 11) is purely attractive

TaBLE 11. NON-POINT COULOMB OXIDE—OXIDE POTENTIALS V3R°(4/2R)
v MgO (atomic UNITS)(I)

method of calculating V3, 4 (v/2R)
electron-gas®

R LP WG RIP semi-empirical®
3.0 0.03883 0.03035 0.03041 —0.00807
3.5 0.01577 0.01003 0.004 06 —0.00328
3.75 0.01022 0.00544 —0.00069 —0.00217
4.0 0.00785 0.00381 —0.00186 —0.00148
4.25 0.00394 0.00050 —0.00451 —0.00103
4.5 0.00272  —0.00023 —0.00454 —0.00073
5.0 0.00093  —0.00130 —0.00438 —0.00039
5.5 0.00006 —0.00168 —0.00385 —0.00022

@ Oxide wavefunctions computed by using environmental description (2.18).

® See second note to table 7. ® Catlow et al. (1976).

decreasing monotonically with decreasing R. However, the O*” ion wavefunction input to the
RIP program, unlike an O~ ion, has a closed outer electronic shell so that two O*~ ions repel
at intermediate separations as shown by the RIP results presented in table 11. Thus the
semi-empirical description (Catlow et al. 1976) can only be appropriate if MgO crystals are
composed not of O%~ but of O~ ions with the remaining electrons occupying a band delocalized
over the entire crystal while the RIP method is only realistic if the crystal is composed of
separate clearly identifiable O?~ ions. The adjustment to reproduce experimental data can only
ensure that the semi-empirical potential (Catlow et al. 1976) is realistic for those R values close
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to R, which determine the input experimental data. Although use of the RIP program and
the semi-empirical approach (Catlow et al. 1976) predict not dissimilar non-point coulombic
attractions for R close to R, their slopes (dV3R°(4/2R)/dR) have opposite sign.

Ab initio calculations for the dimer composed of two ten electron atoms having nuclear charge
8.8553 a.u., chosen to reproduce the experimental polarizability of one O?” ion, predict
(Kendrick & Mackrodt 1983, fig. 4) non-point coulombic interactions similar to those
(table 11) derived from the electron-gas theories. This corresponds to using the potential
—0.88553r,! to represent the effect of the crystalline environment on an electron in the O*~
ion which potential is shown by the discussion of §24 to be unrealistic. For the O>*™—02~
interaction this provides a further reason in addition to those discussed in §4a and §45 (ii) for
distrusting the results of the polarization adjusted dimer calculations of Kendrick & Mackrodt
(1983). ,

The results (table 11) computed with the RIP program show that the non-point coulombic
attractions between the neighbouring pairs of O~ ions stabilize the MgO lattice by 11, 29 and
71 k] mol™! at R = 3.75, 4.0 and 4.25 respectively. The use of either of the two most reliable
electron-gas approximations (Lloyd & Pugh 1977; Waldman & Gordon 1979) with the same
oxide wavefunctions fails to reproduce these stabilizations predicting destabilization.

5. COMPARISON WITH PREVIOUS CALCULATIONS

(a) The electron-gas method

The crystal properties predicted by using both the Waldman—Gordon and Lloyd & Pugh
modifications of electron-gas theory are compared in table 12 both with experiment and with
the corresponding calculations in which the uncorrelated short-range interactions are computed
with the RIP program. The damped dispersion term (2.22) and the unmodified electron-gas
correlation energy were included in all these calculations which therefore differ only in the

TABLE 12. COMPARISON OF ELECTRON-GAS AND RIP PREDICTIONS OF CRYSTAL PROPERTIES()

calculated calculated
electron-gas® electron-gas®
LP WG RIP experiment®  LP WG RIP experiment®
LiF NaF
D, 1044 1081 1038 1035 917 945 938 923, 931
R, 3.86 3.77 3.89 3.80 4.45 4.36 4.38 4.38
B 8.00 9.29 8.16 6.98-8.67 5.18 5.91 5.69 5.14, 5.17
NaCl AgF
D, 762 794 7178 773, 786 786 819 944 942, 953
R, 5.45 5.29 5.36 5.33 5.37 5.22 4.64 4.66
B 2.58 3.03 2.99 2.66, 2.74 2.59 3.44 6.37
PbF, - MgO
D, 2355 2433 2433 2491 2963 3062 3020 3038
R, 5.08 4.97 4.87 4.86 4.09 4.01 4.09 3.98
B 5.89 6.77 6.56 6.08, 627 17.1 19.0 18.8 17.5

@ See first note to table 5. All calculations use wavefunctions computed with the descriptions (2.18) and (2.20)
of the environment, and include all V{y(xxy R) correlation and damped dispersion.

® Electron-gas method used to compute Va(R), Vic(xccR) and V& s(xaa R). See also second note to
table 7.

® See third note to table 6.
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uncorrelated short-range potentials, the Waldman—Gordon and Lloyd & Pugh calculations
using electron-gas theory to compute the cation—anion as well as the anion—anion and
cation—cation uncorrelated short-range potentials. In the Lloyd & Pugh calculations, the
effective number of electrons needed to derive the exchange correction factor for each pair
potential was taken to be the sum of the number (see §34) of electrons contributed by each
of the two ions. In the Waldman—Gordon calculations, the correction factors for the Ne-Ne
interaction were used to derive all the uncorrelated short-range interactions excepting the
Li*-F~ and Li*-Li* potentials. The latter pair of potentials were calculated by using the
correction factors (Waldman & Gordon 1979) for the He-Ne and He-He systems respectively.
Ion wavefunctions derived from the environmental potentials (2.18) and (2.20) were used to
compute all the results presented in table 12. There is, in principle, a slight inconsistency in
the electron-gas calculations because these used relativistic electron densities while retaining
the non-relativistic energy functionals of electron-gas theory. However, it has been shown
(Pyper et al. 1977), even for the interaction of two Hg atoms, that substitution of the relativistic
kinetic energy functional for the non-relativistic one scarcely changed the predicted interaction
potential.

The results presented in table 12 show that use of either electron-gas method introduces
appreciable errors compared both with experiment and with the RIP calculations to which
the electron-gas approach is an approximation. The data presented in Appendix 5 show the
Waldman-Gordon method to underestimate the cation—anion short-range repulsion in all
three alkali halides and MgO, thereby explaining why this approach overestimates the
cohesion of these four crystals. The excess of the LiF and MgO bindings compared with
experiment do not arise from the omission of the correlation correction factors (Waldman &
Gordon 1979) of 0.45 for Li*=F~ and 0.51 for the remaining interactions because the
cation—anion plus anion—anion uncorrected electron-gas correlation energies only contribute
23 kJ mol™ and 55 k] mol™! respectively to the crystal cohesions of LiF and MgO at
R = 3.75 a.u. The Lloyd & Pugh method overestimates (Appendix 5) the repulsion between
an Na' ion and a halide ion while underestimating the Li*—F~ and Mg?*" —O?" interactions,
these errors being propagated into the predictions (table 12) of the crystal cohesion. Both
electron-gas methods predict (Appendix 5) an uncorrelated short-range Pb2*—F~ repulsion of
slightly incorrect shape, this being too repulsive at short distances yet insufficiently repulsive
at longer distances when compared with the RIP potential. It should be noted that the errors
in the electron-gas cation—cation and anion—anion potentials may either reinforce or partly
cancel those of the electron-gas cation—anion interaction in the prediction of the crystal
properties.

Both electron-gas methods are seen to fail completely for AgF, the crystal cohesion being
underestimated (table 12). Use of even the original uncorrected electron-gas method (Gordon
& Kim 1972), which is known to underestimate the short-range repulsion of most systems, only
predicts a lattice energy of 873 kJ mol™* at R, = 4.99 a.u. This failure arises from the already
elucidated origin (Wood & Pyper 1981) which causes the total (including the point coulomb
—1/R term) attraction between a free Ag* and a free F~ ion to be underestimated.

(b) Previous more exact calculations

The previous calculations of the properties of the LiF and NaF crystals (Andzelm & Piela
1977, 1978) neglected terms in the uncorrelated short-range potentials involving products of
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more than two overlap integrals between pairs of atomic orbitals. These calculations also differ
from those reported here in the inclusion of short-range 3-body terms (Lowdin 1956), the
exclusion of the short-range overlap correlation energy, the absence of damping of the
dispersion energy and in the method of adapting the ion wavefunctions to the crystalline
environment. Nonetheless, the uncorrelated short-range interactions computed with free ion
wavefunctions are directly comparable with corresponding calculations with the RIP program.
Although the computations of Abarenkov & Antonova (1970) included neither correlation nor
dispersion damping, their predictions of the short-range interactions, which used free ion
wavefunctions, are even more directly comparable with corresponding RIP results because no
expansion in powers of atomic orbital overlap integrals was used.

Comparison of the present and previous results is facilitated by specializing to the NaCl
structure the result (2.16) for the crystal binding energy and then rewriting this as

UL(R) = —M/R+6[VEA(R) + VXAV 2R) ]+ Uorr (R) + Ugip (R) + Uz (R) + U™ (R),

Ucorr(R) = 6[VEX T (R) + VERRT (V' 2R)]. (5.2)

Here VO (%, R) and VEUTF(x,, R) are the uncorrelated short-range and electron-gas overlap
correlation contributions to the potential (2.165) between the ions a and b computed by using
free ion wavefunctions. The quantity Ufg(R) is the short-range 3-body term predicted by using
free ion wavefunctions, while U®"(R) is the sum of the contributions arising from the
environmentally induced modifications to the uncorrelated short-range potentials, the electron-
gas correlation energy and the short-range 3-body term. These three terms, which all arise from
the environmentally induced modification of the ion wavefunctions, are given by

U™ (R) = Ug (R) + Ugore (R) + Up(R), (5.3)
Uss (R) = 6[Voa(R) — VIEA(R) + Viaa(V2R) = VXA (V2R + Ef(R),  (54)
Ucorr(R) = 6[VGEX (R) — V&R ¥ (R) + VRX (V' 2R) — VXL ¥ (V' 2R)], (5.5)
Ush(R) = Ugp(R) — Ugp(R). (5.6)

Here U,g(R) is the short-range 3-body energy computed by using the crystal wavefunction
(2.1). The cation—cation short-range interactions are negligible for Lit and Na* and therefore
omitted from (5.1). It is also useful to decompose VO (x,, R) into a purely ‘coulombic’
contribution VES!(x,p, R), present even if inter-ionic electron exchange is ignored, plus a term
VEZ (x4 R) arising entirely from exchange of electrons between the ions. The latter has

contributions from both one-electron and two-electron terms:

Vsoab(xab R> = Vs?a%l(xab R) + V{:g(xab R), (5-7>
VES (Xap R) = — ¢4 g/ (Xap R) + ffPTa(r1> Pro(Fy) |1y — 1,7 dr, dr,. (5.8)

Here pr,(r,) is the total charge density of the ion a composed of an electronic plus a nuclear
term.

" The contributions 6VIA(R) to the crystal binding energy made by the uncorrelated
short-range cation—anion interaction predicted from the RIP program by using relativistic
wavefunctions agree satisfactorily (table 13) with those computed by using non-relativistic
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TaBLE 13. CoMPARISON BETWEEN RIP AND PREVIOUS PREDICTIONS OF FREE ION UNCORRELATED
SHORT-RANGE CATION—ANION CONTRIBUTION TO CRYSTAL COHESION (DATA IN KILOJOULES PER

MOLE)
LiF NaF NaCl
6ViEa(R) 673k 6Vsca(R)
R/a.u. RIP AA*t RIP AAY R/a.u. RIP AAt
4 3.5 429.1 440.1 900.5 922.5

> a2 4.0 174.4 176.9 348.0 352.1 5.0 255.5 260.7

o 4.5 73.6 73.9 141.0 141.5 5.25 173.0 176.4
2'1 5.0 32.0 32.0 60.0 59.7 5.5 118.1 120.0
o — 1 Abarenkov & Antonova (1970).
olm
(=4 5 wavefunctions (Abarenkov & Antonova 1970). For these light systems relativistic effects on the
B O  interaction potential are only a few tenths of a kilojoule per mole as shown both by the RIP
Eg program result 6V, (5.25) = 173.2 k] mol™* for NaCl computed non-relativistically and

by the comparison between the relativistic RIP results (table 13) for LiF and NaF with their
non-relativistic counterparts (table 14) also computed by using the RIP program. The
present non-relativistic calculations were done simply by first running the Oxford atomic
Dirac-Fock program with an artificially large value of the velocity of light thus generating
non-relativistic ion wavefunctions which then form the input for a standard run of the RIP
program. Although the agreement (table 14) between the RIP and previous results
(Abarenkov & Antonova 1970) for the interaction (6V2F,(1/2R)) of free non-relativistic
fluoride ions is not unsatisfactory, for the CI™—CI~ interaction the non-relativistic RIP results
of 6VoF,(5.254/2) =—4.9k] mol™! differs significantly from the previous value of

PHILOSOPHICAL
TRANSACTIONS
OF

TaBLE 14. CoMPARISON BETWEEN RIP AND PREVIOUS CALCULATIONS OF THE COHESIVE ENERGIES OF
LiF anp NaF (pATA IN KILOJOULES PER MOLE)(V

LiF (R = 4.0) NaF (R = 4.0) NaF (R = 4.4)
RIP AP1® AA® RIP AA® RIP AP2®
6VESH(R) 21.6 21.6 21.4 —78.3 —78.8 —36.2 —39.9
6VEZ(R) 152.6 155.8 155.5 426.9 430.9 204.8 210.7
P 6V°F '(R) 174.2 177.4 176.9 348.6 352.1 168.6 170.8
@ De"(\/zk) —429 —435 —42.7 —42.9 —42.7 —18.3 —17.3
— (\/2R) 40.6 40.4 38.4 40.6 38.4 15.1 14.3
< — F (V2R)  —2.3 —3.1 —43 —23 —43 ~3.2 ~3.0
> —~ ( ) — -89 —26 — —49 — —18.4
2 i US(R) — +23 — — — — 1.7
— U s(R) — —6.6 —26 — —49 — —16.7
E‘ O penr —26.6 —24.5 — — — —22.2 —134
- 8 U (R) 4.8 — — — — 6.5 —
g UE _(R) —22.6 — — — — —22.8
27| Una® —15.6 —24.9 — — — —19.7 —25.2
$0  -M/R —1147.1 —1147.1 — — — —1042.8 —1042.8
EE L) —1035.2 —1028.8 — — — —935.6 —930.8
85 O U, (R —26.5 — — —66.0 — —35.0 —
9 Z @ For definitions see text.
E§ @ AP1: Andzelm & Piela (1977); AP2; Andzelm & Piela (1978); AA: Abarenkov & Antonova (1970).
oy
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—20.8 k] mol™! (Abarenkov & Antonova 1970). Both the RIP and Abarenkov & Antonova
(1970) calculations use numerical wavefunctions (2.13) for the ions constituting the crystal
thereby avoiding the uncertainties that can arise through the use of basis sets. However, both
programs use an angular momentum expansion to express a function on one centre in terms
of functions on another centre. The RIP program is almost certainly the more accurate of the
two both because it includes 18 terms in the expansion compared with 7 in the 1970 calculation
and because it avoids using angular momentum expansions in the calculation of coulomb
integrals (Wood & Pyper 1986). Furthermore, the results presented in table 2 of Abarenkov
& Antonova (1970) show errors of 0.0003 a.u. on a single integral, whereas the total potentials
V3 (%, R) (2.14) computed with the RIP program show errors no greater than 0.000004 a.u.
as gauged by the difference between the results computed by using 17 and 18 functions in the
angular momentum expansions.

The small discrepancies (table 14) between the RIP predictions of the uncorrelated
short-range potentials and those computed (Andzelm & Piela 1977, 1978) by using analytic
basis set ion wavefunctions (2.13) almost certainly arise either from failure of the overlap
expansion or more probably from basis set inadequacies. That the latter should not be
underestimated, particularly for anion—anion interactions, is shown by the prediction (Andzelm
& Piela 1977, 1978) by using a less good basis for the F™F~ interaction of
673, (44/2) = + 5.4 k] mol™ which even has the wrong sign. However, it should be stressed
(see §44(i)) that both the previous calculations (Abarenkov & Antonova 1970; Andzelm &
Piela 1977, 1978) agree with the RIP program in predicting an uncorrelated short-range
attraction between a pair of free fluoride ions separated by a distance 44/2 a.u.

The uncorrelated short-range 2-body contributions US)'(R) to the binding energy arising
from the environmentally induced modifications of the ion wavefunctions predicted in the
present calculations are lower (table 14) than the previous estimates (Andzelm & Piela 1977,
1978) because the model (2.18) for the potential acting on an anion electron is more realistic
than the potential generated by a point charge lattice, as discussed in §24. This discrepancy
is larger for NaF than for LiF simply because the Na* is larger than the Li* ion. For these
light systems the total contributions (Ug.(R) + User (R) + Uy, (R)) arising from correlation
effects predicted here are larger than those previously calculated (Andzelm & Piela 1977, 1978)
even though dispersion damping was omitted from the latter calculations. The total crystal
binding energies predicted here are similar (table 14) to those previously presented (Andzelm
& Piela 1977, 1978) because the greater environmental and correlation contributions are
partly offset by the short-range 3-body term of Andzelm & Piela (1977). As the further 3-body
interaction arising in the theory of long-range inter-atomic forces (Axilrod & Teller 1943) can
be expected to contribute positively to the crystal binding energy, the total 3-body contributions
may well have smaller magnitudes than those of the short-range terms reported in table 14.
The Axilrod-Teller interaction contributes between 29, and 99, (0.5-1.5 k] mol™!) of the
binding energy of an inert gas crystal (Maitland ez al. 1981) which is dominated by the two-body
dispersion energy. The closer inter-nuclear separations of ionic compared with inert gas crystals
and the inverse ninth power dependence of the Axilrod—Teller term on these separations are
both relevant in the comparison of these systems. Thus it can be argued that it may be more
consistent to omit all 3-body terms, which are in any case small, rather than to include just
the short-range 3-body term.
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(¢) Uppsala group calculations

The calculations of the properties of ionic crystals by the Uppsala group (Léwdin 1950,
1956; Froman & Lowdin 1962; Mansikka & Bystrand 1966; Vallin ef al. 1967; Petterson
etal. 1967, 1968; Calaisetal. 1967, 1971 ; Hayns & Calais 19773) invoked various approximations
such as the neglect of integrals involving charge densities constructed as products of different
atomic orbitals belonging to the same centre. Comparison of calculations involving the Uppsala
approximations with exactly corresponding computations with the RIP program which avoids
these approximations showed the former calculations to underestimate the uncorrelated
cation—anion short-range repulsion in halide crystals (Wood & Pyper 1986). Thus comparison
of calculations, all with free ion wavefunctions and retaining only the Madelung and
uncorrelated cation—anion short-range energies, showed that use of the Uppsala approximations
yielded a spuriously good agreement with experiment.

The changes in the crystal properties predicted by using Uppsala approximations upon
introducing the anion—anion short-range interactions are compared in table 15 with the
corresponding changes predicted by using the RIP program. Although the Uppsala and RIP
calculations use different wavefunctions, these remain unchanged within each set of calculations
thereby demonstrating the effect of introducing the short-range anion—anion interaction. The
instability of the free O ion renders the MgO lattice energies (table 15), measured relative
to Mg?* and O?~ ions, experimentally inaccessible although the true value has been stated to
lie between 3780 and 4070 kJ mol™ (Calais ¢t al. 1971). The results (table 15) show very
clearly that the Uppsala approximations overestimate drastically the uncorrelated short-range

TaBLE 15. RIP anD UPPSALA PREDICTIONS OF THE DEPENDENCE OF CRYSTAL PROPERTIES ON
THE SHORT-RANGE ANION—ANION INTERACTION()

Uppsala group® RIP®
Veca(R)
oaly Vioa(R)+ Veya(v/2R) Voeu(R)
free ion free ion® scaled® only VEca(R)+ V2 A(v/2R)
NaF D, 952 887 873® 879® 906 901
R, 4.20 4.60 4.65 4.59 443 4.48
B 5.0 5.98 5.1 4.1 4.89 4.88
NaCl D, 763 648® — — 739 732
R, 5.1 6.40 — — 5.46 5.56
B 2.54 1.39 — — 2.23 2.29
MgO D,® 385810 31264V — 319410 3975 3956
R, <4.0 5.10 — 4.91 4.06 4.17
B — 11.9 — 6.0 16.8 17.0
AgF D, 9270 88802 — — 853 847
R, — — — — 4.83 4.87

@ For units see first note to table 5. Correlation and dispersion excluded from all calculations.

@ All calculations used non-relativistic wavefunctions.

® Free ion wavefunctions excepting O?>~; 3-body terms excluded.

@ Ton wavefunctions scaled in crystal to satisfy virial theorem.

®) All calculations used relativistic wavefunctions computed with the descriptions (2.18) and (2.20) of the
environment.

® Relative to Mg?* and O* ions.

™ Vallin et al. (1967). a9 Calais et al. (1967).
® Petterson et al. (1968). av Calais et al. (1971).
® Petterson et al. (1967). (2 Hayns & Calais (1973).
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anion—anion repulsions because these are predicted to decrease the lattice energies of NaF,
NaCl and MgO by 65, 115 and 732 kJ mol™! respectively while increasing substantially the
predicted R, values, those of NaCl and MgO being increased by as much as 1.3 a.u. and
1.1 a.u. By contrast the RIP results (table 15) show that introduction of the short-range
anion—anion potential V¢, , (+/2R) only decreases the lattice energies by less than 20 k] mol™!
while increasing the R, values by at most 0.1 a.u.

TaBLE 16. ComPARISON OF RIP AND UPPSALA UNCORRELATED SHORT-RANGE POTENTIALS
(N aTomic UniTs)™)

Vica(R) Vesa(v/2R)
crystal R Uppsala® RIP Uppsala® RIP
NaF 4.0 0.01291 0.02213 0.00867 —0.00014

4.4 0.006 26 0.01070 — —0.00020
NaCl 5.0 0.00989 0.01622 0.04943 —

5.25 0.01099 — —0.00031

5.5 0.00540 0.00750 0.02007 —
MgO 4.0 0.04628 0.11978 — 0.00097

4.5 0.02247 0.09235 0.05466  —0.00180
5.0 0.01120 0.07782 0.02482  —0.00241

@ Free ion wavefunctions used throughout excepting O?".
@ NaF data from Vallin et al. (1967); NaCl from Petterson et al. (1967); V4 (R) for MgO from Calais et al.
(1967); and V2, 4(v/2R) for MgO from Calais et al. (1971).

The comparison (table 16) between the RIP and Uppsala predictions of the uncorrelated
short-range potentials all computed by using free cation and free halide wavefunctions confirms
the failure of the Uppsala approximations deduced from table 15. There is very little
resemblance between the two sets of results, the Uppsala approximations predicting, in
particular, CI™—CI~ short-range repulsions which are excessively large. The enormous discrep-
ancies between the Uppsala and the RIP results for MgO cannot conceivably arise from the
differences in the oxide ion wavefunctions used and thus demonstrate the breakdown of the
Uppsala approximations.

6. CONCLUSION

It has been shown that the cohesive energies, lattice constants and compressibilities of polar
solids containing the heaviest ions can be accurately predicted from fully relativistic calculations
which are also in principle fully ab initio. Such predictions require that the wavefunctions of
the constituent ions be adapted at least approximately to the crystalline environment, that
some estimate of the short-range correlation energy be introduced and that the dispersive
attraction between the ions is included. Furthermore, it has been shown that the damping of
the dispersion energy arising from the overlap of the ion wavefunctions cannot be neglected,
and one approximate method of calculating these damping factors has been developed. It
should be emphasized that both these factors and the dispersion coefficients can, in principle,
be computed ab initio and that any resultant changes in the dispersion energy would not alter
the uncorrelated short-range inter-ionic potentials. It would be a computationally trivial
matter to revise the predicted crystal properties by using new inter-ionic dispersive attractions
while retaining the uncorrelated short-range potentials presented in this paper.
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It has been shown that use of previously reported approximations to the uncorrelated
short-range inter-ionic potentials, here computed exactly with the RIP program, significantly
degrades the quality of the predictions of the crystal properties. Thus the approximations used
previously by the Uppsala group are unsatisfactory, while the electron-gas results vary from
the unacceptable to those slightly but significantly poorer than the RIP predictions. The use
of the electron-gas method to calculate even the uncorrelated short-range cation—cation and
anion—anion potentials while retaining the RIP predictions for the cation—anion interactions
still yields results of significantly degraded quality compared with those computed exactly with
the RIP program. The electron-gas predictions of the anion—anion and cation—cation
interactions differ significantly from those of the RIP program particularly for the heavier
cations.

This work has also provided ab initio predictions of the uncorrelated short-range anion—anion
and cation—cation interactions which are not currently available from semi-empirical fits to
experimental data. The development of the RIP program has enabled the interactions between
pairs of ions as heavy as Pb?* to be computed ab initio, the size and relativistic nature of such
ions having hitherto precluded such calculations.
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APPENDIX 1. PROOF THAT SPHERICAL COMPONENT OF ENVIRONMENTAL
POTENTIAL DETERMINES RADIAL DEFORMATIONS

The operator F;nv(rA’i;R) describes the potential, originating from the remaining ions in
the crystal, which acts on electron i on ion A at a position r, , relative to the nucleus of A.
Although this operator has non-local contributions from exchange and overlap with the
wavefunctions of neighbouring ions, it can still be expressed as sum of irreducible spherical

tensor operators (Brink & Satchler 1968).

o J
Fony(3R) = T X FfP (15 R). (A 1.1)
J=0M=—J
Here M is the component and J the rank of the tensor. The Wigner-Eckart theorem enables
the total energy E

onv(R) of ion A arising from its interaction with the environment to be written
(Brink & Satchler 1968)

Ny

Z Fenv(rA,i;R)

=1

Qgp(rl’ Foy ooy rNA)>

Eenv<R) = <(D££)(r1: Foy ooy rNA)

DO(ry, Fyy ..y rNA)>,
(A 1.2)

NA ~
iz Fe(z.x{'zr(rA,i)
=1

® Jd (0 J 0
E Z (O M O) <¢$"s))(r1’ rZ) vy rNA)

J=0M =—J
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where the superscript 0 on the wavefunction denotes that this has zero total angular
momentum. As all the 3j-symbols in (A 1.2) vanish except that with J = M = 0, only the
spherically symmetric part of the environmental potential contributes to the energy of the ion
wavefunction if this is taken to have the same J of zero as that of the free ion.

In the Dirac-Fock scheme the wavefunction for ion A is written as an anti-symmetrized
product of orbitals |, j, m) having the standard central field form (Grant 1970), where j, and
m denote the total and z-components of the angular momentum. As the label « denotes the
sub-shell (Grant ef al. 1976), the wavefunction can be written

. Ja )
| Pa(Fys Py o5 TN, )D =.sz¢([[ Hj |uajam>). (A 1.3)
a m=—F,
This function describes a closed shell with J = 0 provided the radial parts of orbitals which
differ only in the m quantum number are taken to be identical. The environmental energy is
given by
Eeny(R) =2 JZ_ bX

J ja . =] .
o2 B g gl

o o
eI I R O W LORA T P A S RY

@ J=0M=—J m=—j, -m M

As the 3j-symbol vanishes unless M = 0 while
g
— 1Via—m Ja Ja — . 1
S (a0 ) =g @
only the J = 0 term contributes to (A 1.4), which agrees with the general result presented in

the first paragraph.

APPENDIX 2. TESTS OF APPROXIMATIONS TO DIPOLE-DIPOLE C¢(ab)
DISPERSION COEFFICIENTS

(a) Isolated systems

The most reliable values of the dipole-dipole Cg(aa) dispersion coefficients between like
systems derived from either experimental oscillator strengths or from accurate ab initio
calculations are presented in table A 2.1. These results are compared both with those predicted
from the Slater-Kirkwood (1931), London (Eyring et al. 1944) and Salem (1960) formulae
and with those computed (Fraga ef al. 1976) from three approximations requiring only the
ground state electronic wavefunction. The polarizabilities needed for the Slater—-Kirkwood and
London calculations are also reported in table A 2.1. The electron number in the Slater—
Kirkwood formula was taken to be one for H and the alkali metals, two for the alkaline earths
H,, Hg and He, eight for the remaining inert gases and methane, and ten for N,. For the inert
gases, the results predicted when this number is taken to be six are presented in parentheses.
The ionization potentials needed to evaluate the London formula were taken from Moore
(1971).

The London formula seriously overestimates all the Cg(aa) coefficients except those of the
inert gases which are underestimated (table A 2.1) The three formulae of Fraga et al. (1976)
relate Cg(aa) to sums of the moments of the oscillator strength distributions which are in turn
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computed from an approximate expression involving expectation values over the ground state
electronic wavefunction only. The first two formulae are based on expressions (24) and (31)
of Davison (1968) while the third uses result (6) of Pack (1970). The results presented in
table A 2.1 show all three methods (Fraga et al. 19776) to be quite unreliable. The deficiencies
come primarily from the approximate method of calculating the moments of the oscillator
strength distributions, borne out by the dispersion coefficients being predicted satisfactorily
if more accurate moments are used (Davison 1968; Pack 1970). The results (table A 2.1)
show the Slater-Kirkwood formula to be much more trustworthy than the other five methods
because it does not break down. Furthermore, the relatively small quantitative inaccuracies
of the Slater—Kirkwood formula can be plausibly ascribed to ambiguities in the choice of the
electron number especially for the heavier inert gases where there appears to be no a prior:

Y |

method for deciding between the values of 6 and 8.

In table A 2.2 the best current estimates of the dispersion coefficients between unlike atoms
are compared with those predicted from the Slater-Kirkwood formula with the electron
numbers chosen to reproduce exactly the coeflicients (column 3 of table A 2.1) for the

THE ROYAL A
SOCIETY

interaction of the like systems. These electron numbers are presented in the second column of
table A 2.1. The good agreement between the two sets of results provides strong evidence for
the reliability of the Slater-Kirkwood formula after the electron numbers have been fixed.

TABLE A 2.2. TEST OF DIPOLE-DIPOLE DISPERSION Cy(ab) COEFFICIENTS FOR INTERACTION OF
UNLIKE SYSTEMS PREDICTED BY SLATER—KIRKWOOD FORMULA (ATOMIC UNITS)

PHILOSOPHICAL
TRANSACTIONS
OF

pair exact® SK® pair exact® SK® pair exact® SK®@
He Ne 3.0 3.1 3.2 He Li 22 22.6 21.9 Ar Li 180 175 172
He Ar 9.6 9.8 9.9 He Na 25 24 25 Ar Na 190 189 192
He Kr 13 13.6 13.9 He K 34 38 34 Ar K 270 292 268
He Xe 19 18.3 20.0 He Rb 37 46 38 Ar Rb 290 349 296
Ne Ar 20 20.7 21.0 He Cs 45 56 48 Ar Cs 350 422 376
Ne Kr 27 28.7 29.4 Ne Li 42 44 43 Kr Li 260 259 257
Ne Xe 38 37.8 41.6 Ne Na 48 48 48 Kr Na 280 281 287
Ar Kr 91 94 97 Ne K 66 75 67 Kr K 400 433 401
Ar Xe 130 129 142 Ne Rb 72 91 74 Kr Rb 430 515 442
Kr Xe 190 184 203 Ne Cs 87 111 9 Kr Cs 520 621 562
Xe Li 410 404 410 Na K 2440 2410 2435
Xe Na 450 438 457 Na Rb 2670 2690 2699
4 XeK 630 669 641 Na Cs 3350 3270 3390
< ! XeRb 690 786 707 K Rb 4190 4350 4191
T~ XeCs 830 %5 900 K GCs 5300 5300 5309
- Li Na 1470 1450 1480 Rb Cs 5820 5940 5826
< > LiK 2200 2320 2299
> T LiRb 2510 2590 2524
o [ LiGs 3160 3150 3198
e — @ First column taken from column 3 of table v1 of Langhoff & Karplus (1970). Second column from Tang et al. (1976).
= QO @ Prediction of Slater-Kirkwood formula with electron numbers taken from table A 2.1.
= O
=w

(b) In-crystal ions

The dipole—dipole dispersion coefficients between the ions in some alkali halide crystals have
been derived from measurement of the optical spectra (Mayer 1933; Lynch 1967). Values for
C¢(CI"CI7) and Cg(I"17) in NaCl, KCI and KI were derived (Mayer 1933) by fitting the
optical absorption to a mathematical function and then subtracting a cation contribution
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calculated from a semi-theoretical method that uses the cation polarizabilities of Pauling
(1927). All three coefficients Cg(AA), C¢(CC) and C3(AC) in KCl, KBr and KI have been
derived from a more complete set of optical absorption data (Lynch 1967). Although these data
transcended the limitations of that (Mayer 1933) consisting solely of the optical density of thin
films, the anion and cation contributions to the absorption overlapped significantly. It was
therefore assumed that the absorption corresponding to an integrated intensity of up to six
electrons could be ascribed to the anion leaving the rest to be attributed to the cation.

The dispersion coefficients derived from experiment are compared with those predicted from
the Slater—Kirkwood formula in table A 2.3 taking the electron numbers to be the same as those
of the iso-electronic inert gases (table A 2.1). The polarizabilities of Na*t and K* are known
from accurate ab initio calculation to be 1.002 and 5.339 a.u. and to be independent of the
crystal (Fowler & Pyper 1985). The halide polarizabilities are calculated by subtracting the
cation values from the total molar polarizabilities reported by Wilson & Curtiss (1970). The
results show all the cation—anion coefficients C4(AC) and all three dispersion coefficients for
KCI to be well predicted by the Slater—Kirkwood formula (table A 2.3). For KBr and KI,

TaBLE A 2.3. ACCURATE POLARIZABILITIES AND SLATER—KIRKWOOD FORMULA PREDICTIONS OF
DIPOLE—DIPOLE DISPERSION COEFFICIENTS FOR IN-CRYSTAL IONS COMPARED WITH VALUES
DERIVED FROM OPTICAL SPECTRA (ATOMIC UNITS)

e @ Cy(AA) C4(CA) C4(CQ)

s
salt  opt(L)®W  best® opt(L)® SK®@  opt(L)® opt(M)® SK® opt(L)® SK®  opt(L)®
NaCl — 21.15 — 180 — 122 14 — — —
Kdl 5.60 22.86 22.54 203 191 137 64 65 22.9 24.0
KBr 6.95 30.63 30.37 343 271 — 82 87 229 31.1
KI 8.11 44.87 35.83 634 342 418 108 127 22.9 55.3

@ opt(L) derived from optical spectrum by Lynch (1967).
@ opt(M) derived from optical spectrum by Mayer (1933).
® Derived by subtracting cation polarizabilities (see text) from molar crystal polarizabilities (Wilson & Curtiss

1970).
® SK: prediction from Slater—Kirkwood formula with electron numbers taken to be those for the iso-electronic
inert gases given in table A 2.1.

Cs;(AA) appears to be overestimated while Cy(K*K™) is apparently underestimated. However,
these discrepancies do not come from the failure of the Slater—Kirkwood formula but from the
assumption that an absorption corresponding to not more than six electrons can be ascribed
to the anion. The failure of this assumption is shown by the polarizabilities (table A 2.3) which
were also derived (Lynch 1967) from the absorption spectra. The values deduced for K* in
KBr and KI are too large compared with the accurate ab initio value of 5.339 a.u. which is
only changed by less than 0.006 a.u. on entering the crystal (Fowler & Madden 1984). As the
electron numbers of Kr and Xe are 7.305 and 7.901, the Br~ and I~ contributions to the
absorption are likely to be underestimated by the assumption that this originates from not more
than six electrons. This will cause too large a portion of the absorption to be ascribed to the
K* with consequent overestimation of the polarizability and C;(K*K™"). Further uncertainties
arise from the discrepancies (table A 2.3) between the accurate total molar polarizabilities of
KBr and KI (Wilson & Curtiss 1970) and the sum of the cation and anion polarizabilities
reported by Lynch (1967). The KCI results are, however, free from these difficulties not only
because the sum of K* and CI~ polarizabilities of Lynch (1967) does reproduce the accurate
molar polarizability (Wilson & Curtiss 1970) but also because the assumption that only six
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halide electrons contribute to the absorption is not unreasonable because the electron number
of Ar is 6.106. Thus the optical absorption data do not provide any evidence that the
Slater-Kirkwood formula is unreliable but even provide some further support for its validity.

The dispersion coefficients between pairs of free cations have been calculated (Mahan 1982)
from frequency dependent polarizabilities computed with a non-empirical method in which
exchange and correlation were introduced by a local density functional approximation. These
predictions can be compared with in-crystal dispersion coefficients because s? and p® cation
polarizabilities are insensitive to the environment. The agreement (table A 2.4) between the
calculated polarizabilities and the most accurate values derived either from experiment or fully
ab initio calculation provides evidence for the reliability of density functional approximations.
The agreement (table A 2.4) between the Mahan (1982) non-empirical predictions for the
C4(CC) coeflicients and those calculated from the Slater—Kirkwood formula provides further
evidence that the latter is trustworthy.

TABLE A 2.4. COMPARISON BETWEEN SLATER—KIRKWOOD AND NON-EMPIRICAL PREDICTIONS
OF DIPOLE—DIPOLE DISPERSION COEFFICIENTS BETWEEN LIKE CATIONS (ATOMIC UNITS)

C(CQ)

a of cation SK with® Mahan
ion best® Mahan® a (best) o (Mahan)  computed®
Na* 1.002 1.06 1.59 1.73 1.67
K* 5.339 5.63 229 24.8 23.3
Rb* 9.05 9.35 55.2 58.0 54.0
Mg?* 0.486 0.506 0.63 0.57 0.57
Ca?* 3.193 3.27 10.6 11.0 10.5
Srzt 5.15 5.92 23.7 29.2 27.7

@ Best values from Fowler & Pyper (1985) derived from experiment for Rb* and Sr2* or accurate ab initio
calculation for Nat, Kt, Mg?*, Ca?*,

@ Computed by Mahan (1982) by using local approximations to exchange and correlations.

® Prediction of Slater—Kirkwood formula with electron numbers taken to equal those (table A 2.1) of the
iso-electronic inert gas. Columns headed best and Mahan use the best and Mahan polarizabilities of columns 1 and
2 respectively.

APPENDIX 3. TESTS OF APPROXIMATIONS TO DIPOLE—QUADRUPOLE Cy(ab)
DISPERSION COEFFICIENTS

The most accurate current values of the dipole-quadrupole Cy(aa) coefficients between like
pairs are compared in table A 3.1 with those predicted by the formulae of Margenau (1939),
Narayan (1977) and Starkschall & Gordon (1972). The accurate values are taken from ab initio
calculations because experimental information is limited. The results show that neither the
formula of Margenau (1939) nor that of Narayan (1977) is satisfactory. It should be noted
that, for the interaction of like pairs, the Narayan formula depends only on the polarizability
and not on the electron number. The previous test (Narayan 19%77) of this formula is invalidated
by the use of the ionic polarizabilities of Tessman et al. (1953) which are now known to be
unreliable (Fowler & Pyper 1985), being too large for cations by factors of up to two.

The expectation values of 7* and 72 for the ground state entering the Starkschall-Gordon
formula (2.26) were taken from the tables of Desclaux (1972). The results (table A 3.1) suggest
that it may be preferable to consider all the electrons in the computation of these expectation
values rather than just those belonging to the valence shell, namely the outermost s for the
alkalis, alkaline earths and He, and the outermost s and p for the remaining inert gases.

15-2
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TABLE A 3.1. COMPARISON OF APPROXIMATE METHODS OF DERIVING DIPOLE—QUADRUPOLE Cy(a a)
DISPERSION COEFFICIENTS FROM THE INTERACTION OF LIKE SYSTEMS (ATOMIC UNITS)

Starkschall-Gordon® Margenau®
considering electrons P, from
best(® all valence theory exp Narayan®

He 13.9 14 14 4 6 3
Ne 74 60 61 8 15 11
Ar 1176 1142 1206 247 324 192
Kr 2581 2578 3053 674 738 437
Xe 7033 6677 8661 2062 2088 1162
H 124 146 146 66 80 32
Li 80890 129865 133011 203891 263766 42152
Na 109800 132443 171058 221558 224249 42408
K 383400 379178 588900 803780 780369 133818
Rb 524400 440246 781256 1015222 880505 159010
Cs 902500 605951 1198371 1913349 1289318 252481
Be 10270 9749 10008 6067 8545 2230
Mg 42230 34672 40885 27884 29759 7924
Ca 200000 150902 202069 155971 159073 36894

@ Best values from Starkschall & Gordon (1972) for He, ab initio calculations of Doran (1974) for Ne, Ar, Kr
and Xe, Maeder & Kutzelnigg (1979) for alkali and alkaline earths and Kolos (1967%) for H.

@ Computed with Starkschall-Gordon formula (1972) considering all electrons (column 2) and only valence
electrons (column 3).

® Predicted by using Margenau (1939) formula. Column headed theory uses respectively the theoretical electron
number (discussed in text) used to compute the Cy(aa) reported in table A 2.1. Column headed exp uses the electron
numbers in column 2 of table A 2.1.

@ Cy(aa) = $§(27/26) «2. This is the simplification for like pairs of result (29) of Narayan (1977).

APPENDIX 4. TEST OF THE DISPERSION DAMPING FUNCTION AND THE
CORRELATION ENERGY CALCULATION

The damping functions (x3*(R) and x32(R) for the dipole-dipole and dipole-quadrupole
dispersive attractions between a pair of hydrogen atoms have been calculated analytically
(Koide 1976). The variation method was used to derive the first-order perturbed wavefunction
needed to describe the polarizabilities at imaginary frequencies which are required to calculate
the damping functions. These functions (Appendix 2 of Koide 1976) are extremely similar to
(2.32) and (2.33) with d,; = d,, = 2.

The Koide formalism has also been used to compute more accurately, from an elaborate
first-order perturbed wavefunction, the function y22(R) for the interaction of two Be atoms
(Krauss & Newman 1979). The results presented in table A 4.1 show that the damping factors
predicted from (2.32), with damping parameter calculated from the 2s and 2p orbital
eigenvalues according to (2.41), accurately reproduces the ab initio values plotted in fig. 4 of
Krauss & Newman (1979). A similar damping function is predicted (table A 4.1) from (2.32)
if the two orbital eigenvalues in (2.41) are replaced by the experimental ionization potentials
(in atomic units) of the ground (1S) and first P excited states.

The results of accurate ab initio calculations can be used to test not only the reliability of
the expressions (2.32) and (2.33) for the dispersion damping function but also the calculation
of the electron correlation contribution as the sum of the damped dispersion plus short-range
correlation energy term computed from electron-gas theory. There is no substantial disagree-
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TABLE A 4.1. TEST OF CALCULATION OF DISPERSION DAMPING PARAMETERS AND CORRELATION
ENERGY FOR BERYLLIUM BY AB INITIO CALCULATION

correlation contribution to
interaction energy

Xaa(R) damped dispersion
ab (2.32)@ ab initio® + VEoIT(R)®
R initio'®  eigen  exp IP basis 2 basis 5 eigen exp IP
d
o 4.5 0.16 0.14 0.19 —0.0143  —0.0168 —0.0105 —0.0126
~ 4.75 0.20 0.18 0.23 —0.0119  —0.0139  —0.0093  —0.0112
— 5.0 0.24 0.21 0.28 —0.0097 —0.0113  —0.0082  —0.0097
< — 5.5 0.35 0.30 0.38 —0.0064 — —0.0063  —0.0074
> 6.0 0.44 0.39 0.48 —0.0043 — —0.0049  —0.0056
@) = 7.0 0.65 0.57 0.67 —0.0020 — —0.0027  —0.0031
e 5 8.0 0.81 0.74 0.81 —0.0010 — —0.0015  —0.0016
O 9.0 0.90 0.84 0.90 —0.0005 — —0.0008  —0.0008
T @) @ From Krauss & Newman (1979).
= w @ In columns headed eigen and exp IP, the dispersion damping parameters are calculated from (2.41) by using

orbital eigenvalues and experimental ionization potentials respectively; Cg = 208, Cy = 10270; see tables A 2.1 and
A3.1.

® Harrison & Handy (1983). Basis 2 results communicated privately from which basis 5 results are derived as
described in text.

ment (table A 4.1) over the entire range of inter-nuclear separations between the correlation
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contribution to the energy of interaction two Be atoms predicted ab initio (Harrison & Handy
1983) by using their basis 2 with that calculated as the sum of the damped dispersion plus
electron-gas correlation energies. The three further ab initio values at short distances are derived
by adding the difference between the total interaction energies predicted by bases 5 and 2
(Harrison & Handy 1983) to the results presented in column 5 of table A 4.1.

APPENDIX 5. INTER-IONIC POTENTIALS PREDICTED BY USING THE DESCRIPTIONS
(2.18) AND (2.20) OF THE CRYSTAL ENVIRONMENT

TABLE A 5.1. LITHIUM FLUORIDE POTENTIALST

2 Vsca(R) Viaa(vV/2R)

> E electron-gas electron-gas

®) ——— —

[ a R oA (R) RIP LP WG EA(R) ST (V/2R) RIP LP WG

= Q) 2.75 —0.00216 0.08522 0.06332 0.06022 0.03947 —0.00264 0.03370 0.04204  0.03617

T @) 3.0 —0.00159 0.05051 0.03772 0.03533 0.02465 —0.00195 0.01647 0.02371 0.01950

—~w 3.5 —0.00087 0.01897 0.01406 0.01274 0.00958 —0.00110 0.00404 0.00789  0.00572
3.75 —0.00065 0.01196 0.00879 0.00783 0.00600 —0.00084 0.00197 0.00462  0.00307
4.0 —0.00049 0.00766 0.00557 0.00488 0.00378 —0.00064 0.00095 0.00272  0.00161
4.5 —0.00027 0.00326 0.00232 0.00196 0.00153 —0.00037 0.00018 0.00095  0.00037
50 —0.00015 0.00144 0.00100 0.00081 0.00063 —0.00021 0.00002 0.00032  0.00003
55 —0.00008 0.00066 0.00044 0.00035 0.00026 —0.00012 0.0 0.00011  —0.00005

1 ES(R) <1075 a.u.; RIP, LP and WG methods yield Vi (2.754/2) = 0.00002, 0.00002 and 0.0 respectively.
o (2.754/2) = —0.00001. All other cation—cation short-range energies are under 1075,
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TABLE A 5.2. SODIUM FLUORIDE POTENTIALST

VgCA(R)

A

electron-gas

Viaa(V2R)

electron-gas

f_——)_'ﬁ f—'—‘_/%"'—\
R VEY(R)  RIP LP WG EA(R) cor(\/2R)  RIP LP WG
3.0 —0.00355 0.13265 0.13190 0.12536 0.05071 —0.00178 0.01867 0.02080  0.01707
3.5 —0.00193 0.04526 0.04731 0.04343 0.02211 —0.00093 0.00466 0.00645  0.00467
40 —0.00108 0.01677 0.01804 0.01591 0.00904 —0.00053 0.00118 0.00218  0.00128
4.25 —0.00082 0.01049 0.01135 0.00979 0.00577 —0.00040 0.00059 0.00128  0.00064
_ 4.5 —0.00062 0.00666 0.00722 0.00609 0.00368 —0.00031 0.00028 0.00076  0.00029
<@ 50 —0.00036 0.00282 0.00301 0.00241 0.00151 —0.00018 0.00006 0.00026  0.00002
o 55 —0.00021 0.00124 0.00129 0.00098 0.00063 —0.00010 0.00001 0.00009 —0.00004
< 6.0 —0.00012 0.00056 0.00057 0.00040 0.00026 —0.00006 0.0 0.00002 —0.00004
—
O = Vece(v/2R)
m r A Al
~ — electron-gas
= Q) _——
O R VSE(v/2R) RIP LP WG
=w 30 —0.00016  0.00078 0.00092 0.00065
35 —0.00004  0.00007 0.00009 0.00003

t ES(R) < 107% a.u.; Via(v/2R) and VS (1/2R) all under 1075 for R > 4.0 a.u.
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TABLE A 5.3. SODIUM CHLORIDE POTENTIALST

Vica(R) Vica(V/2R)
electron-gas electron-gas
f—% f_—‘—%
R Ca (R) RIP LP WG EA(R) W (V2R)  RIP LP WG
4.0 —0.00245 0.06393 0.06376 0.056894 0.02911 —0.00246  0.01729 0.01779 0.01264
45 —0.00147 0.02721 0.02781 0.02496 0.01390 —0.00150 0.00555 0.00719 0.00435
50 —0.00089 0.01206 0.01251 0.01086 0.00646 —0.00093 0.00172 0.00293 0.00135
525 —0.00069 0.00814 0.00845 0.00721 0.00439 —0.00073  0.00092 0.00187 0.00069
P 55 —0.00054 0.00554 0.00577 0.00483 0.00298 —0.00058 0.00049 0.00119 0.00030
<] :: 6.0 —0.00033 0.00267 0.00272 0.00219 0.00138 —0.00036 0.00011 0.00047 —0.00003
_ - 6.5 —0.00020 0.00130 0.00130 0.00101 0.00064 —0.00022 0.00001 0.00018 —0.00010
< 7.0 —0.00012 0.00064 0.00065 0.00047 0.00030 —0.00013 —0.00001 0.00006 —0.00010
> E T ES(R) < 1075, Cation—cation potentials are identical to those given in table A 5.2.
=
= O
L= O
= uw
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